A remote optically controlled hydrolase model based on supramolecular assembly and disassembly of its enzyme-like active site†
Abstract
A photoresponsive hydrolase model was constructed through the spatial organization of histidine/arginine-containing peptide supra-amphiphiles that are held together by cucurbit[8]uril (CB[8]) methylviologen (MV) azobenzene (Azo) ternary complexation and subsequently self-assemble into highly uniform giant vesicles. The reversible morphological transition of the vesicular structures to non-assembled peptide fragments was triggered by azobenzene photoisomerization. This enables the assembly/disassembly of its enzyme-like active site to cause a dramatic change in hydrolytic activity. The dynamic process can be directly monitored to determine the supramolecular structure-related enzymatic parameters, which may help to understand how the regulation of enzyme activity is coupled to the aggregation behaviors of natural enzymes.