Issue 22, 2019

Fixation of CO2 as a carboxylic acid precursor by microcrystalline cellulose (MCC) supported Ag NPs: a more efficient, sustainable, biodegradable and eco-friendly catalyst

Abstract

Silver nanoparticles supported on microcrystalline cellulose (Ag NPs@MCC), an active catalyst, has been discovered for the direct carbonylation of terminal alkynes with CO2 into carboxylic acid under mild and sustainable reaction conditions. The stabilized Ag NPs show higher distribution with a uniform particle size. The catalyst was characterized by PXRD, SEM, TEM, HR-TEM, EDS, EDX, ICP-AES and XPS analysis. The Ag NPs@MCC material was found to be more efficient, shows excellent dispersion in various solvents and is biodegradable. The solvent effects on carbonylation of terminal alkynes were well studied both experimentally and computationally. Furthermore, the present catalyst can be recycled in up to five catalytic cycles without significant loss of its activity and is also applicable for the gram scale carbonylation of terminal alkynes.

Graphical abstract: Fixation of CO2 as a carboxylic acid precursor by microcrystalline cellulose (MCC) supported Ag NPs: a more efficient, sustainable, biodegradable and eco-friendly catalyst

Supplementary files

Article information

Article type
Paper
Submitted
17 Dec 2018
Accepted
06 May 2019
First published
06 May 2019

New J. Chem., 2019,43, 8669-8676

Fixation of CO2 as a carboxylic acid precursor by microcrystalline cellulose (MCC) supported Ag NPs: a more efficient, sustainable, biodegradable and eco-friendly catalyst

D. J. Shah, A. S. Sharma, A. P. Shah, V. S. Sharma, M. Athar and J. Y. Soni, New J. Chem., 2019, 43, 8669 DOI: 10.1039/C8NJ06373G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements