Issue 22, 2019

Hydrothermal synthesis and structural characterization of several complex rare earth tantalates: Ln2TaO5(OH) (Ln = La, Pr) and Ln3Ta2O9(OH) (Ln = Pr, Nd)

Abstract

Reactions are reported of early rare earth oxides, RE2O3 (RE = La, Pr, Nd) with Ta2O5 under hydrothermal conditions (650 °C, 1.5 kbar) in concentrated aqueous hydroxide (20–30 M KOH) as a mineralizer. Under various stoichiometries several members of two new structure types were isolated, Ln2TaO5(OH) (Ln = La, Pr) and Ln3Ta2O9(OH) (Ln = Pr, Nd). The analogous niobate La2NbO5(OH) was also obtained. Both structure types were characterized by single crystal X-ray diffraction and contain pentavalent tantalatum oxide octahedra and complex rare earth oxide frameworks. The Ln2TaO5(OH) structure type contains Ln–O8 and Ln–O9 building blocks and TaO6 octahedra in a 3-D framework. It contains a 3-D rare earth oxide framework formed by from zig-zag chains of rare earth oxides linking sheets of rare earth oxides. The tantalates form edge-shared Ta2O10 dimers occupying gaps in the rare earth oxide frameworks. The structure of Ln3Ta2O9(OH) contains two types of 2-D rare earth oxide slabs built of seven and eight coordinate rare earth metals. The tantalate units form 2-D slabs through a multiple corner-sharing scheme of TaO6 octahedra. The Ln3Ta2O9(OH) structure type has an interesting close structural relationship to the previously reported rare earth titanate La5Ti4O15(OH), which is discussed. The presence of hydroxide in the lattice is confirmed by IR spectroscopy and the H atom locations are assigned unambiguously using bond valence sums.

Graphical abstract: Hydrothermal synthesis and structural characterization of several complex rare earth tantalates: Ln2TaO5(OH) (Ln = La, Pr) and Ln3Ta2O9(OH) (Ln = Pr, Nd)

Supplementary files

Article information

Article type
Paper
Submitted
04 Jan 2019
Accepted
17 Feb 2019
First published
08 May 2019

Dalton Trans., 2019,48, 7704-7713

Author version available

Hydrothermal synthesis and structural characterization of several complex rare earth tantalates: Ln2TaO5(OH) (Ln = La, Pr) and Ln3Ta2O9(OH) (Ln = Pr, Nd)

L. D. Sanjeewa, K. Fulle, C. D. McMillen and J. W. Kolis, Dalton Trans., 2019, 48, 7704 DOI: 10.1039/C9DT00059C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements