Issue 19, 2019

Insight into conformationally-dependent binding of 1-n-alkyl-3-methylimidazolium cations to porphyrin molecules using quantum mechanical calculations

Abstract

The first step in the biodegradation of imidazolium-based ionic liquids involves the insertion of the –OH group into the alkyl side chain, and it is believed to be triggered by cytochrome P450. However, at present, there is a lack of fundamental understanding of why the hydroxylation process is observed only for longer alkyl chain analogues. As the initial step of the hydroxylation reaction involves the ionic liquid binding to Fe-porphyrin (FeP) – the catalytic center of cytochrome P450, the orientation of ionic liquids presented to FeP is expected to play a crucial role in eventual hydroxylation of the alkyl side chain. In order to elucidate the chain-length dependent binding preferences exhibited by the homologous series of 1-n-alkyl-3-methylimidazolium (n = 2, 4, 6, 8, and 10) [Cnmim]+ cations, a quantum mechanical treatment of the cations in the presence of free base porphyrin (FBP) and FeP is carried out at the B3LYP-D2 and M06 levels. The binding energy of different complexes with FBP and FeP is investigated by considering three vastly different starting relative orientations of the cations with respect to FBP and FeP: tail down, tail up, and interplanar. Our calculations of binding energies reveal that the cation orientations initiated from the tail down conformations (alkyl chain facing the porphyrin molecules) are progressively destabilized as the alkyl chain length increases. The decomposition of the binding energies into various energetic contributions shows that the interaction energy between the cations and porphyrin molecules varies with the cation geometries presented to porphyrin molecules and is the primary determinant of the magnitude of the binding energies. We further demonstrate that the propensity of the cation–FeP complexes to acquire an electron, the next step in the hydroxylation reaction cycle upon substrate binding, is favored independent of the cations and conformations, suggesting that this step is not the reason for the low biodegradability of short alkyl chain bearing cations. Furthermore, the weaker binding of the ionic liquid to FeP is anticipated to facilitate dioxygen binding to FeP, the step following the electron transfer reaction. Overall, the results of the present calculations indicate that the destabilization of the tail down conformations relative to the other two conformations correlates with the experimental results of the chain length-dependent biodegradation of imidazolium-based ionic liquids.

Graphical abstract: Insight into conformationally-dependent binding of 1-n-alkyl-3-methylimidazolium cations to porphyrin molecules using quantum mechanical calculations

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2019
Accepted
19 Apr 2019
First published
22 Apr 2019

Phys. Chem. Chem. Phys., 2019,21, 10095-10104

Insight into conformationally-dependent binding of 1-n-alkyl-3-methylimidazolium cations to porphyrin molecules using quantum mechanical calculations

A. Banerjee and J. K. Shah, Phys. Chem. Chem. Phys., 2019, 21, 10095 DOI: 10.1039/C9CP01538H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements