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1 Introduction

“All men are caught in an inescapable network of mutuality.”

(Martin Luther King Jr.)

Coarsening dynamics of ferromagnetic granular
networks—experimental results and simulationsf

® Robin Maretzki,> Tom Dumont, (22

¢ and Reinhard Richter (2 *@

@ Pedro A. Sdnchez,
< Sofia S. Kantorovich

Armin Kégel,
Elena S. Pyanzina,

We investigate the phase separation of a shaken mixture of glass and magnetised steel spheres after a
sudden quench of the shaker amplitude. After quenching, transient networks of steel spheres emerge in
the experiment. For the developing network clusters we estimate the number of spheres in them, and
the characteristic path lengths. We find that both quantities follow a log-normal distribution function.
Moreover, we study the temporal evolution of the networks. In the sequence of snapshots we observe
an initial regime, where the network incubates, followed by a temporal regime where network structures
are elongated and broken, and finally a regime where the structures have relaxed to compact clusters of
rounded shapes. This phaenomenology resembles the initial, elastic and hydrodynamic regimes
observed by H. Tanaka [J. Phys.: Condens. Matter, 2000, 12, R207] during the viscoelastic phase
separation for dynamically asymmetric mixtures of polymers. In order to discriminate the three regimes
we investigate in the experiment order parameters like the mean number of neighbors and the
efficiency of the networks. In order to capture the origin for a viscoelastic phase separation in our
granular mixture, we use a simple simulation approach. Not aiming at a quantitative description of the
experimental results, we rather use the simulations to define the key interactions in the experimental
system. This way, we discover that along with dipolar and steric interactions, there is an effective central
attraction between the magnetised spheres that is responsible for the coarsening dynamics. Our
simulations show as well three regimes in the evolution of characteristic order parameters.

of dynamically asymmetric mixtures a new type of viscoelastic
phase separation has been proposed by Hajime Tanaka.” This
model complements the solid model and the fluid model of
phase separation, which are both well known. In the viscoelas-

In the last decade, networks that are neither completely
regular, nor completely random have attracted much interest.
These networks are highly clustered like regular lattices, yet
have small characteristic path lengths like random graphs.
Examples comprise the connections in-between routers of the
internet,’ citation networks® or transportation networks in
plant leaves,® slime mould,* or rail systems.” These networks
may evolve in time, but have no transient nature.

In contrast, transient networks emerge during the phase
separation of dynamically asymmetric mixtures, like a solution
of a polymer in a less viscous solvent.® Here, the slow compo-
nent is the polymer, the fast one is the solvent. For these kind
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tic model the phase separation starts with an initial regime -
the incubation of a network — where an order parameter like the
dominant wave number only slowly changes. This is followed
by an elastic regime, where network like structures are elon-
gated and eventually broken. This regime is characterized by a
drastic change of the order parameter. In the final, hydro-
dynamic regime, “the network like structure relaxes to a
structure with rounded shape and the domain shape starts to
be dominated by the interface tension as in usual fluid-fluid
phase separation”.”

Here, we make the supposition that a dispersion of magnetic
particles in a magnetically neutral granular medium may also
be regarded as a dynamically asymmetric mixture. In such a
system, the magnetic interactions mediate the elastic forces.

Indeed, it is well known from ferrofluids, a colloidal disper-
sion of magnetic nanoparticles,® that they form chains and
aggregates. This is especially true for a dispersion of cobalt
nanoparticles.” The latter excel by their high magnetic dipole
moment. In the nanometer scale, however, the formation of
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networks is difficult to investigate because the imaging relies
on transmission electron microscopy. The latter requires frozen
samples'® which impedes to observe the dynamics. In contrast,
in the micrometer range, networks of ferromagnetic particles
and their dynamics can be inspected by optical means. In this
way, Wen et al.'* observed the aggregation dynamics in a suspen-
sion of magnetised, nickel-covered glass spheres (diameter
d = 50 pm) and compared the observed structures with numerical
simulations based on dipole-dipole-interactions without noise.
In the same range, Snezko et al.'? investigated the structure
formation of electromagnetically driven Ni-particles. They
observed compact clusters, rings, chains and rudiments of
networks. Stambaugh et al.'®'* experimented with spheres in
the cm-range, with permanent magnets of different strength
incorporated in them. They investigated pattern formation and
segregation. Due to the small size of the experimental systems,
however, networks were not reported.

For our topic, the experiments by Blair and Kudrolli'® are
path-breaking. The authors vibrated a mixture of permanently
magnetised steel spheres and glass beads by means of a shaker.
They established a phase diagram under variation of the
acceleration amplitude and the filling fraction. It shows a
hysteretic transition between a homogeneous gas phase and a
phase, where single particles and agglomerates -coexist.
Quenching the system from the gas phase (¢f our snapshot
in Fig. 1) into the mixed phase, the authors found loose
networks like in Fig. 2a and compact networks, like in Fig. 2b.

We revisit this rich system in order to tackle for the first time
the question, whether network formation in a mixture of
magnetised beads in a magnetically neutral phase can be
captured by the model of viscoelastic phase separation. For
our study we exploit the fact that the granular temperature can
conveniently be quenched by switching the amplitude of the
vibration exciter. This is a clear advantage comparing to ferro-
fluids, where lowering the temperature is slow and may also
induce a freezing of the solvent.'”

The article is organised as follows. In the next section
(Section 2) we describe the basics of the experiment. Thereafter
we present our experimental results (Section 3), which comprise
a network analysis (Section 3.1), and the temporal evolution of
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Fig. 1 Examples for a gas of steel and glass spheres for I' = 3 g.
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Fig. 2 Examples for networks, as formed 5 seconds after the quench, for
I' =18 g (@ and I' = 1.9 g (b). After ref. 15. A movie of the network
formation is provided as supplementary movie SM1 (ESI¥).

characteristic measures derived therefrom (Section 3.2). Then we
describe our simulation method (Section 4). After that we
analyse the simulated structures (Section 5) and compare them
with the experimental ones. In this way, we are able to under-
stand the nature of the magnetic interaction and the part of the
glass beads. Finally (Section 6), the summary of our investigation
is provided and the missing aspects are outlined.

2 Experimental methods

In the following we describe the experimental setup (Section
2.1), the mechanical and magnetic properties of the spheres
(Section 2.2), and sketch the image processing, utilised for the
experiments (Section 2.3).

2.1 Experimental setup

Our experimental setup is sketched in Fig. 3. An experimental
vessel is driven by an electromagnetic shaker (Briel & Kjeer,
type 4808) which is connected via an amplifier (Briiel & Kjeer,
type 2712) to a function generator (Agilent, type 33120A). The
latter generates a voltage which is sinusoidally varying in time,
the amplitude and frequency of which can be controlled via a
bus (GPIB) by a personal computer.

This journal is © The Royal Society of Chemistry 2018
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Fig. 3 Scheme of the experimental setup.

Unavoidably, the electromagnetic vibration exciter generates
a magnetic stray field. Its vertical component B, has been measured
by means of a Hall probe (Lakeshore, type MNA-1904-VH) and a
teslameter (Lake shore, type 450). The results are shown in Fig. 4.
The solid green line marks the radial dependence B,(r) at a height
of =10 cm, which has a maximum in the centre. The red dots give
B,(2) at r = 0 cm. The values decay drastically with increasing z,
like the field of a dipole (dashed line). In order to minimize the
influence of the stray field onto the steel spheres, the vessel is
fixed via a hollow brass rod (outer diameter 20 mm) and a
bearing to the flange of the exciter. In this way, the bottom of
the experimental vessel is situated 53.5 cm above the top of the
exciter, where B, < 61 pT. The latter is in the range of B, of the
earth in central europe (44 pT) and shall be neglected.

The vessel is filled with a mixture of steel spheres and glass
beads. Their position is recorded by means of a charge-coupled-
device camera (Lumenera Corporation, type LU135M) with 8-bit
resolution, where each frame has 1392 x 1040 pixel. The spheres
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Fig. 4 The vertical component of the magnetic stray field of the vibration
exciter plotted as a function of the height B,(z,r = 0 cm) (red) and the radius
B.(r,z = 10 cm) (green). As origin for z we selected the top of the flange of the
exciter. The dashed line denotes a fit by B,(z) = uous(2m) Yzo + 2)~° where the
magnetic dipole moment of the shaker s = (3.31 + 0.06) x 10’ Am? and zo =
(59.9 + 0.6) mm.
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Fig. 5 Cross section of the vessel. The crossed shaded area represents
the bottom plate made from aluminium honeycomb material, the black
area marks the frame made from Perspex. The green (red) line represents
the glass plate (the electroluminescence sheet), respectively.
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are illuminated from below, by an electroluminescent film
(Zigan Displays) mounted beneath a glass plate, as sketched in
Fig. 5. The dimensions (width x length x height) of the rectangular
vessel are 200 x 285 x 12.85 mm?>. The vessel has no lid. In order to
achieve a light-weight but stiff vessel its bottom plate is made from
aluminum honeycomb material (CEL Components S.R.L.). During
the experiments we record the acceleration amplitude I" with an
acceleration sensor (Briiel & Kjaer, type 4509 B002), which is
mounted beneath the vessel.

2.2 Properties of the spheres

Highly monodisperse steel spheres are available from industrial
steel ball bearings. We ordered several types with a diameter of
3 mm and measured the magnetic dipole moment x by means of a
vibrating sample magnetometer (Lakeshore VSM 7404). Fig. 6a dis-
plays the resulting magnetisation M = p/Vy of the volume Vs of the
steel spheres for increasing and decreasing internal magnetic field

H; = H — DM. 1)

1000;
500¢

M(KA /m)

—500
—1000;

-200 —100 0 100

400} (b)
200

0

M(KA /m)

—200

—400

-1.0 -0.5 0.0 0.5
internal magnetic field H,(kA/m)

1.0

Fig. 6 Magnetisation M vs. internal magnetic field H; following egn (1) of
the selected steel spheres. The red rectangle in (a) marks the range of the
zoom displayed in chart (b). Here the filled circles give the measured data,
the solid lines present fits by eqn (2) for estimating the magnetic remanent
magnetisation Mg and the susceptibility yo.

Soft Matter, 2018, 14, 1001-1015 | 1003
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Fig. 7 Remanent dipole moment ug (Lh.s.) and coercivity Hc vs. applied
magnetic induction for the selected steel spheres.

Here, H denotes the externally applied field and D = 1/3 the
demagnetisation factor of a sphere. Note the rectangular red
marked area in Fig. 6a. Its blowup in chart (b) illustrates that
the hysteretic evolution of M around H; = 0 kA m™" can be
linearised by

M(H) = £Mg + 70H;, (2)

where My marks the remanent magnetisation, and y, the
susceptibility of the steel at H; = 0 kA m~". The solid lines in
Fig. 6b stem from fits of eqn (2). Fig. 7 displays the remanent
dipole moment My and the coercivity H, for different maximal
inductions applied. Both quantities saturate for By, on the
order of 500 mT. This is why, before the measurement, the steel
spheres were magnetised by exposing them to an induction
higher than 500 mT. Testing several brands of steel spheres, the
type with the highest Mz and coercivity He was selected.
Its properties are summarised in Table 1. Following these data,
we emphasize, that our steel spheres are dipoles with suscepti-
bility. Moreover, the glass spheres were selected in such a way
that their mass approaches the mass of the steel spheres as
close as possible.

The filling fraction of the glass spheres, ¢, as well as the
one of the magnetised spheres, ¢, can be varied in the experi-
ment. Following ref. 16 we define the filling fraction via

3
Eﬁr spher62

Avessel

Asphere

¢=N =N

. (3)

Avessel

Table 1 The properties of the utilised spheres

Material Soda-lime glass Steel 1.3505
Manufacturer Sigmund-Lindner.com Isometall.de
Type Type P DIN5401G10
Radius r (mm) 2.0 £ 0.02 1.5 £ 0.02
Volume V (mm?) 33.51 14.14
Density p (kg m—?) 2580 7610

Mass m (g) 0.084 0.108
Remanence Mg (kA m™") — 340 + 3
Susceptibility yo — 76 £2
Coercivity He (kA m™ 1) — 4.46 + 0.3
Dipole moment pux

(107" A m? — 4.83 + 0.02

1004 | Soft Matter, 2018, 14, 1001-1015
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where N counts the number of spheres, and Agppere captures the
area of the regular hexagon around a sphere of radius rppere. In
this way, ¢ becomes 1 for a hexagonal close packing in 2D.

2.3 Image processing

To the recorded frames first a trapezoidal correction is applied.
For the analysis of the networks, the steel spheres have to be
detected. This is achieved by binarising the pictures. The light
intensity of pixels below a certain threshold becomes 0 and
above 255. For a proper detection of all spheres the threshold
needs to be increased in steps. These pictures are then pro-
cessed with tools from the computer vision software OpenCV'®
which yield the contour and coordinates of the spheres. Next,
for a detection of the network, neighbouring spheres have to be
recognised. Therefore, the distance between the centre of
neighbouring spheres is compared to the diameter. In order
not to loose too many real contacts the distance was allowed to
vary by a factor of 1.13 from the diameter of 2-rphere. The
abstract structure of the network is reduced to a graph, as
shown in Fig. 13, by means of the software package networkX"’
based on the script language python.>

3 Experimental results

We start our experimental runs always by a large shaker amplitude
of I' = 3 g. Here, the collisions in-between the particles transmit
high energy, which impedes any self-assembly and the system is in
the gas phase. After quenching the amplitude of the vibration
exciter, the magnetised steel spheres form first dimers, then chains
and clusters as shown in the video which can be accessed here.*!

Two neighbouring magnetised steel spheres attach to each
other if they are close enough and properly oriented. After
forming a dimer, the mass of the new cluster has doubled
compared to each particle, which lowers its mobility. Moreover,
its magnetic moment has increased as well. Consecutively,
further particles tend to be attracted to the ends of the dimer,
creating a chain of three magnetised spheres, whereas a
triangular configuration is hardly observed, because it is
energetically less favourable. The trimers extend to longer chains.
With their length increasing, it becomes more likely that some
steel spheres are also connected to the side of a chain, forming
various branched structures®*** as shown in Fig. 8a. With increas-
ing length, the chains bend more easily and collisions with glass
spheres become more frequent. This can lead to the formation
of rings, like displayed in Fig. 8b, or to the disruption of chains.

(a) (b)

Fig. 8 Clusters which emerge can reduce their magnetic energy by
forming branched chains (a) and rings (b).

This journal is © The Royal Society of Chemistry 2018
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The further evolution of the pattern is very sensitive to the value of
the shaker amplitude. For lower amplitude, loose networks are
favoured (¢f Fig. 2a), whereas for slightly higher amplitudes,
compact networks and areas with dense hexagonal packing
(“crystallites”) form earlier (see Fig. 2b).

In the following Section 3.1 we introduce and apply different
network measures to the ferrogranular structures. These mea-
sures are then exploited in Section 3.2 to describe the temporal
evolution of the transient networks.

3.1 Characterization of the network

We characterise the emerging networks by their number of
neighbours (Section 3.1.1). Moreover we investigate the distri-
bution of clusters in the network counting the number of
spheres of a cluster (Section 3.1.2), and the distribution of
the characteristic path lengths (Section 3.1.3).

3.1.1 Number of neighbours. A basic measure for networks
is the number of neighbours & to which each node is connected
by edges. It is in a two-dimensional layer geometrically limited
to 6. Next we exemplary analyse the two states illustrated in
Fig. 2 by the distribution of k, as shown in Fig. 9. For ' = 1.8 ¢
(bright), almost all spheres are connected to neighbours,
whereas at I" = 1.9 g (dark), some spheres remain alone (k = 0).
For the lower amplitude, the numbers of spheres which are
situated within a chain or a ring (k = 2) or at chain ends (k= 1) is
about twice as high as those for a slightly higher amplitude. This
is in agreement with Fig. 2b where crystallites are more frequent
than in (a). The greater compactness of the state of Fig. 2b is also
reflected in the mean number of neighbours' k, as presented
in Table 2.

3.1.2 Number of spheres in the clusters. The cluster size at
a specific time depends strongly on the acceleration amplitude
I'. As seen in Fig. 2, larger clusters are favoured by a slightly
higher I', that enhances the mobility of the still solitary spheres.

The border of the clusters, as marked by the red lines in
Fig. 10, are automatically detected. The number of spheres
within the lines yields the cluster size. Many individual spheres
and a few large clusters are dominating the picture, where
the size of the latter is limited by the finite size of the vessel.

0.6 I I I |

I | I
B I'=19g _
[/ I'=18¢g
04} ]

0.5 |-

0.3 | i
0.2
0.1

el

degree of node, k

relative frequency

Fig. 9 Relative occurrence of the number of neighbours (k) for I' = 1.8 g
(bright) and 1.9 g (dark) and ¢4 = 0.15, ¢, = 0.15.

This journal is © The Royal Society of Chemistry 2018

View Article Online

Paper

Table 2 The average number of neighbours for two different applied
acceleration amplitudes

Acceleration I (g) k
1.8 2.39 + 0.06
1.9 3.15 £ 0.10

Fig. 10 Detected clusters in the network depicted in Fig. 2b. Connected
steel spheres are bordered by the red line. The inner voids, created by
loops, are marked by the blue line.

Fig. 11 presents the distribution of the cluster sizes for '=1.8 ¢
five seconds after the quench. The distribution resembles the
log-normal distribution

202

) — ul?
10 = —exp (L2 Y, "

where u denotes the mean value and ¢ the standard deviation.
It describes the normal distribution of logarithmically distributed
random numbers and is ubiquitous in nature** for systems with
positive definite observables. This function was successfully
applied to the particle size of smashed objects>> and may fit as
well for repeatedly smashed clusters. Moreover it is also known
from random network structures.®

For a careful comparison of experiment and eqn (4), we plot
in Fig. 12 the cumulative distribution of the cluster size for

=2
—
o

0.05

relative frequency

0.00

spheres per cluster

Fig. 11 Distribution of cluster size for I' = 1.8 g, and ¢4 = 0.27, ¢, = 0.25,
determined from 50 frames.

Soft Matter, 2018, 14, 1001-1015 | 1005
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Fig. 12 Distribution function fitted to the cumulative incidence of the
cluster size for I' = 1.8 g and 1.9 g, with ¢4 = 0.27, ¢, = 0.25.

two different accelerations. The solid lines display fits of the
distribution function

N(x) = NTJ:n(x’)dx’ = %(1 +erf {%} ), (5)

where N; denotes the total number of clusters, and erf the
Gauf} error function. The mean m and the standard deviation s
are related to the log-normal distribution via**

m = exp (u + %2) (6)

s =exp (u + %2) exp(a?) — 1. )

In Fig. 12 the measured data for I' = 1.8 g can well be fitted
by eqn (5), whereas at I' = 1.9 g deviations are prominent at
small cluster size, which is reflected in Table 3.

3.1.3 Characteristic path length. Fig. 13 presents a sight of
Fig. 2b, where all spheres were replaced by nodes, and the
edges connecting the spheres by lines. From such a reduced
graph the characteristic path length

1
L=———% dj 8
N(N _ 1) ; g ( )
can be defined, where N counts the number of nodes or
spheres, and d;; measures the shortest path length in-between
the i-th and the j-th node. It measures the minimum number of
edges one has to trespass in order to go from node i to node j."
Therefore, the characteristic path length L is an average of all
shortest path lengths within a cluster.

Table 3 Mean value and standard deviation of the measured (real) and
fitted (fit) distribution of cluster size (number of spheres) for two different
acceleration amplitudes

View Article Online

Soft Matter

Fig. 13 Reduced graph of Fig. 2b, where only the connecting lines
in-between the steel spheres are shown. The supplementary movie SM2
(ESIT) is showing the evolution of the reduced network graph.

3000

2000

1000

cumulative frequency

characteristic path length, L

Fig. 14 Cumulative incidence of clusters vs. the characteristic path length
forI'=18gand 1.9 g, with ¢4 = 0.27, ¢, = 0.16. The solid lines mark fits by
eqn (5). For fitting parameters see Table 4.

In order to determine L of every cluster, we use the software
package networkX"® for the script language python.* Similar to
the previous section, we investigate again the cumulative dis-
tribution of the cluster size, now measured in L. As shown in
Fig. 14, the cumulative distributions for both acceleration
amplitudes are well fitted by the integral of the log-normal-
distribution eqn (5). Comparing the mean of the measured
(real) and the fitted (fit) distributions in Table 4 shows only a
tiny difference, which confirms the quality of the fit.

So far we have characterized the emerging network by means
of the number of neighbours k and by the characteristic path
length L. We have focused on these quantities because they

Table 4 Calculated and fitted mean values and standard deviations of the
distribution of the characteristic path length L for two different accelera-
tion amplitudes

Acceleration I’ (g) 1.8 1.9  Acceleration I' (g) 1.8 1.9
Mreal 16.0 142 Myeal 4.55 7.80
Mee 16.5 185  mg 4.58 8.46
Sreal 27.0 70.6  Sreal 5.25 12.1
Stit 37.5 550 Stit 6.39 23.1

1006 | Soft Matter, 2018, 14, 1001-1015

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7sm00796e

Open Access Article. Published on 11 December 2017. Downloaded on 11/16/2025 3:04:29 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Soft Matter

serve in the following to characterize the evolution of the
network. However, its worth to note, that the distribution of
clusters measured by means of the gyration radius shows as
well a log-normal distribution. Moreover, also the distribution
of the loop sizes is an interesting observable. An analysis of the
latter observables will be given in a subsequent publication.

3.2 Evolution of the network

After introducing and testing various measures for networks in
Section 3.1, we are now prepared to investigate the temporal
evolution of the ferrogranular network. Especially we will focus
on the temporal evolution of the mean number of neighbours
(Section 3.2.1) and on the evolution of the efficiency (Section 3.2.2).

3.2.1 Evolution of the mean number of neighbours. The
mean number of neighbours & is plotted in Fig. 15 vs. the time
for two different acceleration amplitudes. We start in the gas
phase where k = 0, and quench at ¢ = 0 s. During the first five
seconds after the quench k increases rapidly. During this time
the steel spheres form first dimers and trimers. During the
further evolution k grows more slowly.

In a first attempt, we try to characterise the temporal
evolution of k by the logistic function

k(1) = kmax | 1 —T(;)),, ; )

which describes many limited growth processes in nature very
well.>” In eqn (9) kmax denotes the saturation value of the
growth and ¢, the time when k equals to the half of the
saturation value. With increasing ¢, the network grows more
slowly. The exponent p describes the curvature of the graph.
For p >» 1 the logistic function increases in the beginning more
slowly, but grows more rapidly around ¢,, where it approaches
fast its saturation value.

The fit of k(¢) agrees rather well with the experimental values,
as displayed in Fig. 15. Table 5 presents the parameters derived
from the fit. For higher I' the saturation value kmax iDCreases.
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Fig. 15 Temporal evolution of the average number of neighbours for two
different accelerations I', and ¢4 = 0.27, ¢, = 0.16. The solid lines indicate
fits by eqgn (9).
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Table 5 A fit of the logistic function (9) to k(t) yields the following
parameters

Acceleration I (g) 2.0 2.1
Kmax 3.3 3.8
to (s) 1.9 3.4
p 0.75 0.86

This is in agreement with our qualitative observations, which
relate a higher I" with more compact structures. Also ¢, varies
strongly with I'. For I' = 2.0 g half of the saturation value is
reached at ¢, = 1.9 s, whereas for I' = 2.1 g this happens at ¢, =3.4 s,
which is considerably later.

3.2.2 Evolution of the efficiency. For the characteristic path
length L (8) the length in-between spheres on separate clusters
diverges. Therefore L must be estimated for the individual
clusters, and later be averaged. This can be circumvented by
using the efficiency

1 1

E=yv-1 dy

(10)

i#]

of a network.?® Here, N counts the number of spheres, and d;; is
the shortest path length in-between sphere i and sphere j.
In this way E measures the parallel information exchange
in-between the nodes of the network.”®

The efficiency E is plotted in Fig. 16 vs. time. For all
investigated values of I', we observe a monotonous increase
of E. In the first five seconds after the quench at t = 0 s E
increases rapidly, which is followed by a more moderate evolu-
tion afterwards. Here, small steps in the evolution occur if two
larger clusters are merging. This is an outcome of the finite size
of the container and the limited statistics. In contrast to the
evolution of the average number of neighbours, (see Fig. 15
above) the curves in Fig. 16 do not indicate a saturation.
Therefore, a fit by the logistic function is not convincing. We
note in Fig. 16 as well that higher values of E are related with a
higher acceleration amplitude I'.

It is interesting to know how the filling fraction ¢ will
influence E(t). In Fig. 17, we plot E(¢) for four different values

_3)

efficiency, FE (10

0 50 100

t(s)

Fig. 16 The efficiency E according to egn (10) vs. time t for three different
acceleration amplitudes I'. For all I' the filling fractions (3) are ¢4 = 0.15,
¢m = 0.20.
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Fig. 17 The efficiency E according to egn (10) vs. time t for I' = 1.9 g. The
filling fraction for the glass beads was fixed to ¢4 = 0.15, whereas the one
for the magnetised beads was varied according to ¢, = 0.15, 0.20, 0.25,
and 0.30.

150

of ¢m. For each I' we observe a monotonous increase of E,
which is, similarly to that in Fig. 16, first steep and then
moderate. For higher values of ¢,,, one may expect larger
clusters and larger path length L. Due to the limit of k = 6 this
will result in a smaller efficiency. Indeed, at e.g. ¢t = 50 s, a
higher value of ¢,, leads to a lower E for all filling fractions.
However at ¢t &~ 120 s we observe a crossover of the curves for
¢m = 20% and 25%. This may be due to the limited statistics of
our experimental arrangement.

The graphs of k(f) (¢f. Fig. 15) as well as E(t) (see Fig. 16 and 17)
clearly display two distinct time scales. A short time scale = 2¢, of
a few seconds, where the network is emerging, and a long time
scale ~100-t, where its structure is being transformed. These two
time scales indicate an initial and an elastic regime, predicted in
ref. 7 for viscoelastic phase separation. Moreover, the emergence
of compact hexagonal arrangements of magnetised spheres can
clearly be discriminated in the supplementary movies SM1 and
SM2 (ESIt). However, they are not yet dominating the pattern, as it
is predicted for the hydrodynamic regime.” Consequently, it is
difficult to unveil the transition in the evolution of the order
parameters in the Fig. 15 and 16.

For times larger than 180 s we can detect an increase in E.
However, we do not show this here, because we rely not fully on
the statistics due to finite size effects, i.e. collisions of the
clusters with the edge of the vessel. The latter are becoming
increasingly important at long times, where the cluster size is in
the range of the experimental vessel. Note that already 5 s after
the quench networks can approximate the diameter of the
vessel, as can be seen in Fig. 2b.

Due to mechanical limitations it is not straight forward to enlarge
our experimental setup by an order of magnitude. Instead we re-
examine the long term behaviour in a simple numerical model.

4 Theoretical modelling

In order to complement the experimental measurements, we
also study the system by means of Langevin dynamics
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computer simulations with a minimal coarse-grained theore-
tical model. The reason to undertake a theoretical analysis is
twofold. First, this approach may help to identify the main
mechanisms leading to the network topologies observed in
our experiments by allowing us to easily compare with the
effects of different hypothetical interactions. Second, once a
proper model of the system is obtained from such compar-
ison, one can study the coarsening dynamics and network
properties by overcoming the above mentioned experimental
limitations.

Before introducing our theoretical approach, it is important
to underline that it does not aim at any quantitative character-
isation of the system. Instead we focus strictly on establishing
the basic ingredients that can reproduce qualitatively the main
properties of the network evolution, particularly the ones
corresponding to slow dynamics.

A simple starting point to define a minimal model of
spheres that exhibit magnetic interactions is to consider that
they carry a magnetic point dipole in their centres. Despite this
description is only exact for homogeneous monodomain
spheres, it has been used extensively as a useful approximation
for the study of physical systems with very different character-
istic sizes, ranging from magnetic nanoparticles to systems of
macroscopic spherical magnets. The highly anisotropic nature
of the dipole-dipole interaction leads to a strongly directional
spontaneous self-assembly of the spheres, that tend to form
linear chains with head-to-tail arrangements of their dipoles.
This effect is well known in the study of ferrofluids and other
systems of ferromagnetic nanoparticles.>*** However, the
networks of magnetised steel spheres observed in our experi-
ments include a significant fraction of close packing crystallites,
a structure that is very unfavourable for a system driven only by
dipole-dipole self-assembly.

One can hypothesise that the dipolar approximation is still
valid for the magnetic interactions in this system and that the
close packing topology has its origin in the kinetic effect of the
bath of non magnetic beads. Alternatively, one may claim that
the size of the steel spheres and their experimental magnetisa-
tion curve described by eqn (2) suggest that they may actually
have a multidomain nature, making the dipolar approximation
too inaccurate. In this case, the magnetic dipole moment of
each individual sphere would depend in part on the field
created by its surrounding neighbours. The overall effect of this
complex interplay would be to make the effective interaction
between the steel spheres less anisotropic than the corres-
ponding to pure dipolar spheres, allowing the formation of close
packing crystallites. In order to ellucidate which is the correct
hypothesis, we chose a computer model that allows us to easily
separate such effects, while keeping a minimalistic approach.
This model and the simulation method are described in the
following sections.

4.1 Minimal model

In our simulations we represent both, the glass and the steel
spheres, as soft core beads that interact isotropically by means
of a truncated-shifted Lennard-Jones potential. This interaction,
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also known as Weeks-Chandler-Andersen (WCA) potential,® is
defined as:

Upy (I’) — ULy (rcut)7 r <Teut
Uwcal(r) = ;

0, 2> Feut

(11)

where 1., is the cutoff distance at which the potential is
truncated and Upyr) is the conventional Lennard-Jones (L])
potential, Uy,(r) = 4¢[(a/r)"* — (a/r)°], in which & corresponds to
the energy scale of the interaction and ¢ to the characteristic
diameter of the beads. The WCA potential, frequently used in
coarse-grained dynamics simulations, allows to represent purely
repulsive or attractive isotropic interactions by choosing ade-
quate values for 7.y, in our case rey = 2% for purely repulsive
and r., = 2.50 for attractive interactions. Here, we take advan-
tage of this feature in order to deduce the effective interaction
between the magnetised beads, which we consider to be
composed of one isotropic and one anisotropic part. First, we
assume that the anisotropic part can still be represented by the
dipolar approximation. This implies that the steel spheres have a
permanent magnetic moment determined by their volume, Vg,
and remanent magnetisation, Mg, as = MgVs, in agreement
with Table 1. As usual, this magnetic moment is represented by a
fixed point dipole located at the sphere centres. This part of the
interaction is therefore given by the conventional dipole-dipole
potential:

(A; - ;)
3

Uaa(if) = —3(“f i "fi?ﬂﬁ(ﬂj - Fy) .

) (12)

where 7;; = 7; — 7; is the displacement vector between the dipoles
of the beads i and j. Second, instead of a detailed modeling of
the mutual magnetisation induced by close steel beads, we stick
to a minimalistic phenomenological description of this effect by
introducing a short-range isotropic attraction between them,
defined by eqn (11) under attractive conditions. Finally, non
magnetic beads are allowed to interact with any other particle
only by a soft-core repulsion, also defined by eqn (11) but in this
case under repulsive conditions.

Our strategy to clarify what is the actual drive of the
coarsening dynamics observed in our experiments is to perform
simulations for three different systems, corresponding to dis-
tinct qualitative combinations of the interactions defined
above, and to compare the resulting networks to the experi-
mental ones. Following an order of increasing complexity, first
we simulated a monodisperse system of ideal soft core dipolar
spheres (S1), i.e., a system of identical beads with characteristic
diameter ¢,,, and magnetic moment ji. These beads interact via
the dipole-dipole potential (12) and a purely repulsive WCA
potential, obtained from eqn (11) by taking e, = 2"°0, 6 = o
and ¢ = ¢,. For the second system (52), we add to S1 a fraction of
identical non magnetic beads, representing the glass spheres,
with characteristic diameter o,. The repulsion between these
non magnetic beads is calculated in the same way by using
o = 0,4, Whereas for the repulsion between the magnetic and non
magnetic beads we take ¢ = (o, + 0,)/2. Finally, the last system
(S3) is obtained by adding to the interactions defined for S2 the
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aforementioned isotropic attraction between the magnetic
beads, also obtained from eqn (11) by taking re, = 2.50, ¢ = ¢,
and ¢ = gy,

4.2 Simulation approach

As pointed above, the simulation method we use is molecular
dynamics with a Langevin thermostat. In this approach, a
friction and a stochastic term that satisfy the usual fluctua-
tion-dissipation relations are added to the Newtonian equa-
tions of motion in order to approximate statistically the effects
of neglected degrees of freedom.*® In this case, such terms
represent the effects of the mechanical shaking on the
dynamics of the beads. In other words, in our simulations we
treat the mechanical shaking as thermal fluctuations, so that
the shaking amplitude is represented by the system tempera-
ture, T. It is important to underline that this representation is
only qualitative and no formal relationship between these
parameters has been established here. Instead, we determine
the temperature corresponding to a given experimental shaking
amplitude by sampling different values of T and choosing the
one that better reproduces the coarsening dynamics of the
experimental system. In detail, the translational and rotational
Langevin equations of motion acting on each particle i in the
system are, respectively,

my(dv/de) = F; — Ty + &y

(13)
and

I:(d@/dt) = T — T'r; + &, (14)

being F; and 7; the total force and torque, m; the particle mass
and I, its inertia tensor. Finally, I'r and Ik are the translational
and rotational friction constants, and ELT and Ei,R the Gaussian
random force and torque.

As it is frequently done in coarse-grained simulations, we
take an arbitrary system of reduced units for all physical
parameters, with the only constraint of keeping the relative
scales of the relevant quantities as close as possible to the
experimental ones. Mass units are defined by the mass of the
steel and glass beads, m,, and m, respectively. These were
chosen to be equal, so that we take my, = m, = 1. Lengths are
measured in terms of the respective diameters of the beads.
Keeping the experimental ratio, we take ¢, = 3 and o, = 4.
Energies are measured in the scale of the soft-core repulsive
interactions, so that we chose ¢, = 10. Finally, in general one can
define formally the reduced time scale in the system in terms of
the units of mass, length and energy. However, here one has to
take into account that the temperature plays a role that is only
defined qualitatively by comparison with the experimental
results. This makes it more accurate to also determine the time
scale of the simulations by fitting the coarsening dynamics of
the simulated systems to the experimental measurements. It
has also the additional advantage of letting the choice of the
rest of dynamic parameters to be arbitrary. Therefore, we can
choose the reduced values of the friction constants to be 'y =1
and I'g = 3/4, which are values known for providing a fast
relaxation in this type of simulations.*”*® Finally, in order to
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ensure isotropic rotations, we set the inertia tensors, I;, as the
identity matrix.

In order to mimic the experimental setup as close as
possible without suffering its finite size effects we simulate a
pseudo-infinite two-dimensional system by fixing the z coordi-
nate of all particles to zero and using lateral periodic boundaries
for the x-y plane. Under these conditions, the calculation of the
long-range dipole-dipole interactions requires an efficient
approximate method. For this we used the dipolar-P’M
algorithm,*® combined with the dipolar Layer Correction
method*® in order to take into account the slab geometry of
our system. The simulations were carried out with the package
ESPResSo 3.2.0.*"*

4.3 Simulation protocol

Our simulation protocol includes two main steps. First, we
place the beads inside the simulation box randomly and
equilibrate the system at a temperature, 73, that is high enough
to keep a gas like state. Second, we quench the system by
decreasing abruptly the temperature to its final value, T,, and
measure the particle configurations as the system relaxes. In
particular, we look at the time evolution of the average number
of neighbours (i.e. the mean degree of a node of the network).
The goal of this protocol is to find the combination of inter-
action parameters and the time scales that brings the system
closer to the experimental configurations. That is, we search for
the right set of interactions for our system, using the simula-
tion time as a fitting parameter.

For the sake of simplicity, in simulations we focus on a
single set of experimental parameters to fit the model and
analyse the coarsening dynamics. Specifically, in all the simula-
tions the area fraction of the magnetic beads is ¢, ~ 0.18,
whereas in systems S2 and S3 the area fraction of non magnetic
beads is ¢, ~ 0.15, so that ¢, + ¢, ~ 0.33. These values were
obtained by placing 1466 magnetic and, for S2 and S3, addi-
tionally 687 non magnetic beads in a square simulation box
with side length L = 240. In all cases the temperature during the
first simulation step was taken to be T; = 2. Finally, in order to
fit the simulation model to the experimental results, we explore
diverse values of the quenching temperature, T, ={0.3,0.5,0.75},
energy scale of the isotropic attraction in S3, ¢, ={0.3,0.5,1}, and
dipole moment of the magnetic beads, u = |i|. The values
of u were chosen to provide reasonable values of the so-called
dipolar coupling parameter, A, at the sampled values of T; and
T,. This parameter, frequently used to characterise the self-
assembly behaviour in systems of magnetic dipolar particles, is
defined as the ratio between the minimum dipole-dipole
energy of a pair of particles and the thermal energy of the
system. Here, we can express it as:

1

L T0'm3 .

(15)

According to this definition, the sampled values of yu corre-
spond to the intervals A € [0.5,1.75] for T; and 4 € [2,7] for T,.
However, in the following we will focus the discussion of the
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results only on the most interesting values of these parameters.
As a last comment on the details of the simulation protocol, at
least 16 independent simulation runs were performed for every
set of parameters to obtain reasonably good statistics. These
simulation runs consisted of 3 x 10° integration steps at Tj,
with a simulation time step dt; = 0.0005, and the same amount
of integration steps at 7,, with a simulation time step 7, = 0.01.

In order to perform a quantitative characterisation of the
simulated networks, we first have to identify the clusters of
connected magnetic particles. For this we use a simple distance
criterium: two magnetic particles are connected if their centre-
to-centre distance is less than 1.30,,. Note that this threshold
corresponds to applying the same factor used for identifying
the experimental networks, 1.13, to the distance at which the
soft core steric repulsion used in the simulations vanishes,
Feut = 2Y°6,m. Once the networks are identified, their parameters
are calculated in exactly the same way as we did for the
experimental data.

5 Simulation results

We start the discussion on the simulation results by examining
the configuration snapshots obtained for every system. In
Fig. 18 we present a selection of these snapshots to illustrate
the evolution of the networks after quenching the system to
T, = 0.5. No configurations from the system formed by only
magnetic particles, S1, have been included in this figure
because they match, as it was expected, the well known self-
assembled structures observed in several existing works on
dipolar hard spheres (see, e.g., snapshots in ref. 38). Impor-
tantly, even a simple visual comparison of the networks
obtained in the simulations for S1 in front of the experimental
ones evidences that they are rather different. Therefore, in
Fig. 18 we only show representative configurations corres-
ponding to systems S2 and S3. In particular, we show examples
obtained for A = 5 at three different simulation times and, in the
case of S3, for three sampled values of the central attraction.

For systems S2, as shown in the examples of column (a0, b0,
c0), one can observe that the magnetic beads form structures
composed by short linear chains, rings and branched chains.
These structures evolve with time, albeit without obvious
qualitative changes: Only the size of clusters grows slightly
and some of them merge to form side-by-side arrangements.
Still the general structure is much more loose than the one
observed in the experiments.

In contrast, introducing a central attraction makes a strong
impact on the overall structure: even for a weak central attrac-
tion—e, = 0.3, shown in column (a1, b1, c1)—one sees larger
clusters with bundles of chains and/or rings that deplete/
enclose the non magnetic particles. The growth of these clus-
ters with time is also clearly stronger. This trend becomes even
more pronounced as the central attraction grows, as is shown
in the columns (a2, b2, c2) for ¢, = 0.5 and (a3, b3, ¢3) for ¢, = 1.
For the latter case, we can see how the system separates
very early into magnetic and non magnetic particles, with the

This journal is © The Royal Society of Chemistry 2018
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Fig. 18 Snapshots of the simulations of mixtures of magnetic and non magnetic particles obtained for 2 = 5 and T, = 0.5, at different integration steps
ns., after quenching: n;, = 2500 (a0-a3), ns, = 10° (b0-b3) and ny, = 2.5 x 10° (c0-c3). The column (a0, b0, cO) corresponds to the system without
central attraction, S2 (e, = 0), and the rest to different strengths of the central attraction, S3: ¢, = 0.3 (al, b1, cl), &; = 0.5 (a2, b2, c2), and ¢, = 1.0 (a3, b3,
c3). Magnetic particles are plotted in black, non magnetic in light grey. Neighbouring contacts between particles forming clusters are marked in orange
(see the main text for the criterium to identify neighbouring particles). Supplementary movies (ESI) are provided for S2 (SM3) as well as for S3, ¢, = 0.5

(SM4) and S3, ¢, = 1.0 (SM5).

magnetic ones forming compact clusters of nearly hexatic
packing. This observation already suggests that the central
attraction may be an essential ingredient to capture the
dynamics of network formation in experiments. A more rigor-
ous comparison between simulation and experimental results
is presented in the next section.

5.1 Model fitting

In order to determine what is the set of interactions that better
represents the experimental behaviour, we focus on the short
time dynamics of the most simple and robust network para-
meter discussed here: the mean degree of the network nodes, k,
that is equivalent to the mean number of close contact neigh-
bours of each magnetic bead. We assume this parameter to be
weakly sensitive, at least at short times, to biases introduced by
experimental limitations, like finite size effects or slight unle-
vellings of the experimental vessel.

Fig. 19 shows the best fit to the experimental data (marked
by O) of the values of k obtained from simulations of five
systems with different interactions. These are systems S1, S2
and S3 with three different strengths of central attraction,
&, = {0.3,0.5,1.0}. In all cases, time ¢ = 0 corresponds to the
moment at which the quenching takes place. The fit consisted

This journal is © The Royal Society of Chemistry 2018

of a rescaling of the simulation time to match the experimental
evolution profile obtained during the first 20 seconds after
quenching. Specifically, we obtained the relationship ¢ = 0.4387,
where ¢ is the physical time and t is the simulation time. This
time rescaling will be applied to all remaining simulation
results.

The comparison of all the simulation curves with the
experimental data clearly indicates that systems S3 are much
closer to the experiment than S1 and S2, which underestimate k
significantly. Among the S3 systems, the one with ¢, = 0.5 shows
an excellent agreement with the experimental results within the
range used for the fitting, whereas lower and higher strengths
of this interaction tend to underestimate and overestimate &,
respectively. One can also see that, even for the best set of
model interactions, systematic deviations from the experi-
mental values tend to increase with time. This can be explained
by the growing impact of finite size effects on the experimental
measurements. Therefore, we conclude that the presence of the
central attraction is an essential requirement to capture the
experimental dynamics in our minimalistic modelling approach
and, in particular, that the intermediate value ¢, = 0.5 provides
the best approximation to the experimental results obtained for
shaking amplitude I = 1.8 g. For simplicity, from now on we will
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Fig. 19 Short time evolution after quenching of the average number of
neighbours, k, for the experimental system of reference (empty squares)
and for simulations with model systems S1, S2 and S3 with ¢, = {0.3,0.5,1.0}
(filled symbols). All simulation results correspond to 2 =5, T, = 0.5 and a
rescaling of the simulation time given by the best fit to the experimental
data within the interval t € [0,20] s.

refer to the model system S3 with ¢, = 0.5, A = 5 and T, = 0.5
as S3*.

Once we determined the best model for the experimental
system of reference, we can examine in simulations the long
time properties of the networks of magnetic beads under ideal
measurement conditions. In the next sections we present the
simulation results for the average number of neighbours and
the network efficiency.

5.2 Number of neighbours

Fig. 20 shows the simulation results of the long time dynamics
of the mean number of close contact neighbours, k, obtained in
the networks of magnetic beads for 1 = 5 and T, = 0.5 with
system model S3*. For the sampled time interval, that spans
from 0 to 3800 s after quenching, one can clearly observe the
existence of three different dynamic regimes. At short times
after quenching—up to ¢ < 5 s—there is a pronounced growth
of k corresponding to the initial aggregation of the magnetic
beads into clusters, leaving behind the gas phase. Once the
mean degree reaches a value of k¥ ~ 2, indicating that most of
the beads have become aggregated into chain-like clusters, the
growth of this parameter slows down. This second regime
spans the time interval 5 s < ¢ < 360 s. Finally, once the mean
degree reaches the value k ~ 3, its growth rate increases again
moderately, without reaching saturation up to the maximum
sampled time.

The existence of three dynamic regimes, as evidenced by the
behaviour of the parameter k, suggests that the system may
indeed display a viscoelastic phase separation, so that such
regimes may correspond to the ones proposed by Tanaka:”**?
initial, elastic and hydrodynamic, respectively. However, their
accurate interpretation requires subtle considerations. As
pointed out above, regime (i) corresponds to the aggregation
of isolated particles into clusters whose structure is dominated
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Fig. 20 Long time behaviour of the mean degree of node, k, in the
networks of magnetic beads obtained from simulations with model system
S3* (symbols) and semilogarithmic fits to the three dynamic regimes that
can be observed, labelled as (i) to (iii) (solid lines). The dark background
spans the intermediate time region to help the eye to identify the limits of
each regime. The slopes of the fits are: 0.72 (i), 0.21 (i) and 0.41 (iii).

by the dipolar term of the pair interaction. This leads to
networks with mainly chain-like topologies. The transition
from regime (i) to regime (ii) signals the point where the
fraction of particles with more than two neighbours, favoured
by the central part of the pair interaction, starts to be signifi-
cant. This suggests that the main phenomena in region (ii) may
correspond to changes in the topology of the networks, that
evolves from chain-like to hexatic crystallites. Finally, the
interpretation of the transition between regimes (ii) and (iii)
is hard to establish without further elements of analysis. These
are provided in the next section, where results for the network
efficiency and the mean cluster size are discussed.

5.3 Network efficiency and cluster size

The long time evolution of the network efficiency, E (10),
obtained in simulations with model system S3*, is shown in
Fig. 21(a). Here, one can also identify three different dynamic
regimes, but their limits are clearly shifted towards later times
in comparison to what was observed for the evolution of the
number of neighbours. This means that the dynamics of E is
significantly slower than the one of k. Also important is the fact
that the evolution profile is qualitatively different: the slowest
growth of E is happening in the first region, (i), whereas the
fastest corresponds to regime (ii). Therefore, it is evident that k
and E are order parameters that characterise phenomena with
clearly different time scales.

A complementary picture of the different dynamic phenom-
ena present in the system can be obtained by computing a third
parameter: the mean relative cluster size, C. This is simply the
average number of magnetic beads per cluster divided by the
total number of magnetic beads in the system. Fig. 21(b) shows
the simulation results for this parameter, together with the two
sets of regime limits determined for k (indicated by the borders
of the grey area) and E (marked by dashed lines). We can see
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that initially there is a very slow growth of C, that remains up to
an intermediate point between the beginning of regime (ii) of
the network efficiency and the end of regime (ii) for the number
of neighbours. After such point, the growth rate of C becomes
much larger. This fast growth is a clear signature of the
merging of separate clusters into larger ones.

Finally, the comparison of the results shown in Fig. 20 and
21 allows us to complete the sequence of main dynamic
phenomena governing the evolution of the networks. After
the initial interval in which a fast aggregation of the magnetic
beads into clusters with a mainly chain-like structure takes
place, driven by the long range dipolar interactions and corres-
ponding to regime (i) of the evolution of the mean degree, the
formed clusters experience a compaction by slowly replacing
their chain-like morphologies by hexatic crystallites allowed by
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Fig. 21 Long time evolution of the network efficiency, E, obtained for
simulations with model system S3* (symbols), and semilogarithmic fits to
the three regimes observed, labelled as (i) to (iii) (solid lines). Dotted vertical
lines indicate the limits between regimes. The slopes of the fits are: 0.14 (i),
0.47 (ii) and 0.31 (jii). (b) Long time behaviour of the mean relative cluster
size, C, for the same system. To ease the comparison with Fig. 20 and 21(a),
the regime limits shown in such figures are also indicated here by the dark
background and the vertical dotted lines.
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the short range central attraction. This compaction is favoured
by the collisions of the non magnetic beads on the clusters.
We identify this regime with the elastic phase of Tanaka’s
viscoelastic transition. Finally, the slowest phenomenon is the
merging of separate clusters into larger ones, which becomes
the dominant effect near the end of the regime (ii) of k and
manifests itself in the fast growth of both, k and E. We consider
this to correspond to the hydrodynamic regime of Tanaka’s
transition. The fact that the merging of the clusters, producing
the final phase separation of magnetic and non magnetic
beads, happens mainly at very long times is the consequence
of the slow mobility of the clusters compared to individual
particles: recently, it has been shown that such mobility tends
to decrease with the cluster size.** As a final observation, the
slight slowing down of the growth of E corresponding to its
regime (iii) can be explained as the onset of a saturation of the
impact of the merging process in this parameter: whenever two
separate clusters merge, all the pairs of beads belonging to each
one of the original clusters start to contribute to increase E.
However, according to the definition (10), when the merged
clusters are large most of the newly networked pairs have a little
contribution to this growth because their shortest path lengths
are anyway very large. In other words, statistically, the merging
of many small clusters into medium sized ones has a stronger
impact on E than the merging of few large clusters into very
large ones.

6 Summary and outlook

When comparing the pictures of the networks in experiment
(Fig. 1 and 2) to those in the simulations with central attraction
(Fig. 18, columns at r.h.s.), we observe in both cases a transition
from a gas like state to a branched network of chains of
particles. With time, more and more hexagonal arrangements
of spheres (‘“crystallites”) emerge in the network, whereas the
connecting chains fade away. This transition is more pro-
nounced in the simulations with strong central attraction
(Fig. 18, column 3), than in those with weaker attraction
(Fig. 18, column 2) or in the experiment. In the latter case the
transition may be arrested in part by glass beads trapped in the
loops. Moreover, finite size effects, induced by the container edges
become increasingly important for long experimental runs.

Still it is safe to conclude that experiment as well as simula-
tions show an initial regime (i), where short chains of dipoles
are emerging, which is followed up by a time span exhibiting
the formation of a complex and contracting network of chains,
and finally (iii) a regime characterised by compact clusters of
magnetised spheres with rounded shape, which slowly evolve.
We relate these states with the initial (i), elastic (ii) and
hydrodynamic (iii) regimes, first observed by Tanaka’ during
the phase separation of dynamically asymmetric mixtures of
polymers. In our granulate, the magnetised beads represent the
slow component, whereas the glass beads act as the fast one.

The transient networks could be characterised in the experi-
ment by the distribution of cluster size, as measured in number
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of spheres, and the mean average path length. Interestingly, at
short and moderate time-scales, these distributions can well be
fitted by log-normal functions.

In search for a suitable order parameter of the viscoelastic
phase separation, we studied the mean degree of a node, the
efficiency of the network and the average cluster size. In
experiment and simulation the short time evolution of the
degree is well described by a logistic function, that is character-
istic for limited growth processes. In the simulations, we can
access also long-time behaviour of the mean node degree, that
clearly shows three distinct regimes, thus, making this obser-
vable a good candidate to serve as an order parameter for our
system. Moreover, the growth of the efficiency and the cluster
size exhibits different time-scales, being the former signifi-
cantly larger than the corresponding to the degree. Here, the
statistics needs to be improved in follow up experiments and
simulations in order to better discriminate the elastic and the
hydrodynamic regimes.

The comparison between the experiment and the model
unveils that besides magnetic dipoles, an effective central
attraction is essential for the transient nature of the network.
This central attraction is a consequence of the magnetisation
curve of the steel spheres. Each sphere represents a dipole with
susceptibility, that we can name in short: a DipSus. In reality,
the attraction in the experiment is the result of the Kelvin force,
and is intrinsically anisotropic. For simplicity, our model
incorporates just an isotropic approximation to this attraction.
In other words, we model our DipSus system as a ferrogranular
analogue of a Stockmayer fluid.*®

To conclude, shaken ferrogranulate exhibits interesting
features, including network formation and viscoelastic phase
separation. More in depth studies are necessary to find com-
monalities and differences to networks recently observed in
systems of externally induced dipoles.*®*®

Last, but not least, we add a far-ranging outlook. Due to the
abundance of iron in many asteroids and planets, and its high
Curie temperature, the observed coarsening dynamics of sus-
ceptible and partly magnetised iron particles may play an
important role in the early stage of planet formation. This
process may be capable to overcome the bouncing barrier*® in
particle agglomeration. The emerging iron “cores” may than
trigger the gravitational agglomeration of the remaining matter.
Related experiments under microgravity conditions are yet to be
performed.
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