Issue 7, 2018

Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade

Abstract

Metal halide perovskites have established themselves as extraordinary optoelectronic materials, exhibiting promise for applications in large area illumination and displays. However, low luminescence, low efficiencies of the light-emitting diodes (LEDs), and complex preparation methods currently limit further progress towards applications. Here, we report on a new and unique mesoscopic film architecture featuring the self-assembly of 3D formamidinium lead bromide (FAPbBr3) nanocrystals of graded size, coupled with microplatelets of octylammonium lead bromide perovskites, which enables an energy cascade, yielding very high-performance light-emitting diodes with emission in the green spectral region. These hierarchically structured perovskite films exhibit photoluminescence quantum yields of over 80% and LEDs associated with record high efficiencies in excess of 57.6 cd A−1 with an external quantum efficiency above 13%. Additionally, due to low turn-on voltages (∼2.2 V) the LEDs have power efficiencies exceeding 58 lumens per watt, obtained without any light-outcoupling structures.

Graphical abstract: Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2018
Accepted
12 Mar 2018
First published
12 Mar 2018

Energy Environ. Sci., 2018,11, 1770-1778

Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade

X. Y. Chin, A. Perumal, A. Bruno, N. Yantara, S. A. Veldhuis, L. Martínez-Sarti, B. Chandran, V. Chirvony, A. S. Lo, J. So, C. Soci, M. Grätzel, H. J. Bolink, N. Mathews and S. G. Mhaisalkar, Energy Environ. Sci., 2018, 11, 1770 DOI: 10.1039/C8EE00293B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements