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Through-conjugation of two phosphaalkyne
(‘CuP’) moieties mediated by a bimetallic
scaffold †

Matthew. C. Leech and Ian R. Crossley *

Through-conjugation of two phosphaalkyne moieties within an

isolable molecule is demonstrated for the first time with the syn-

thesis of [{Ru(dppe)2}2{μ-(CuC)2C6H4-p}(CuP)2], via base-induced

desilylation of [{Ru(dppe)2}2{μ-(CuC)2C6H4-p}(η1-PuCSiMe3)2]
2+.

The nature of the cyaphide ligands and their influence upon the

bimetallic core are studied electrochemically.

Phosphaalkynes (RCuP)1 are archetypal models of the phos-
phorus–carbon analogy,2 being both isolobal and isoelectronic
with alkynes. Though dichotomous in nature – by virtue of the
polarity and lone-pair imparted by phosphorus – their chemi-
cal analogy to alkynes is well-established, with a prevalence of
cycloaddition/oligomerisation reactions, while both η2-CP (cf.
alkynes) and η1-P (cf. nitriles, alkynyls) complexes with tran-
sition metals are known.3 Notwithstanding, an enduring omis-
sion lies with the incorporation of the discrete ‘CuP’ moiety
into architectures featuring extended conjugation (cf. the
prevalence of polyacetylides), a desirable target – particularly
from an organometallic standpoint4 – given extensive interest
in acetylenic and phosphorus-containing moieties in the
context of developing molecular electronic components.5–7

Indeed, the conjugation of phosphaalkyne (‘CuP’) moieties
with other π-systems is limited to the small range of aromatic
phosphaalkynes: PhCuP,8 2,6-R-C6H3CuP (R = Mes, tBu),9

2,6-R-4-R′-C6H2CuP (R = tBu, R′ = OMe, NMe2;
9b R=R′ = tBu,10

CMe2Et
11) and the putative PuC–CuE (E = CH, N,12a,b P12c–e),

which were generated (transiently) and observed in the gas
phase. The latter (PuC–CuP) is also among a very limited
range of compounds to feature two ‘CuP’ moieties (Chart 1),13

and is the sole precedent example for which their mutual con-
jugation might reasonably be invoked (albeit unstudied).

Though a small number of transition metal complexes fea-
turing trans-disposed η1-phosphaalkynes has been reported,14

viz. [M(L)2(PuCtBu)2] (M = Mo, L = dppe, depe, R2PC2H4PR2,
R = Tol, ClC6H4); (M = W, L = dppe), [Mo(depe)2(PuCAd)2] and
[Mo(dppe)2(PuCSiMe3)2],

15 even the concept of metal-
mediated conjugation (cf. bis-alkynyl complexes) was un-
explored prior to our recent report of the unprecedented cya-
phide–alkynyl complexes trans-[Ru(dppe)2(CuCR)(CuP)] (R =
CO2Me, p-An).16 Herein, we extend this conceptual framework
to consider, for the first time, extended conjugation between
multiple ‘CuP’ moieties, mediated by a bimetallic, redox-
active, core; we also elucidate the electronic and redox nature
of these complexes.

The sequential treatment of the bisethynylbenzene-bridged
bimetallic complex [{Ru(dppe)2}2{μ-(CuC)2C6H4-p}Cl2] (1) with
two equivalents of AgOTf and PuCSiMe3 facilitates installation
of two terminal phosphaalkyne moieties to afford 22+

(Scheme 1). Formation of 22+ is evident from characteristic
spectroscopic signatures indicative of a coordinated phos-
phaalkyne (δP 111.4, JPP 34 Hz) in proximity to the dppe
scaffold (δP 42.2 (1 : 4 ratio)), while the carbon-rich bridge
remains apparent from 13C{1H} NMR and infrared (νCuC

2054 cm−1) spectroscopic data. Retention of the silyl moieties
follows from heteronuclear (1H–29Si) correlation, while the tri-
flate counter-ion is observed in the 19F-NMR spectrum
(δF −78.9); bulk composition is affirmed by microanalysis.

The connectivity of 22+ is further supported by X-ray diffrac-
tion data (Fig. 1).17 The internal geometry is largely unremark-
able, exhibiting only slight deviations from linearity about the
metal centres (∠ P–Ru–C 173.4(2), 175.3(2)°) and in the bridge

Chart 1 Known bis-phosphaalkynes.12,13

†Electronic supplementary information (ESI) available: Synthetic procedures,
characterising data and spectra, computational and electrochemical details,
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(∠ Ru–CuC 174.5(4), 174.2(4); ∠ CuC–C 174.5(5), 172.7(5)°)
characteristic, respectively, of other bis-alkynyls18 and the
limited range of structurally characterized complexes compris-
ing the ‘Ru2{μ-(CuC)2C6H4-p}’ and related cores.19 The co-
ordinated phosphaalkyne moieties are similarly consistent
with related analogues.14–16,20

Conversion of the η1-PuCSiMe3 moieties to terminal cya-
phide ligands (‘–CuP’) proceeds upon treating 22+ with
2 equiv. KOtBu,21 affording 3 in moderate yield (Scheme 1).
While single crystals of 3 can be grown, their rapid desolvation
during mounting (even at low temperature) has precluded the

acquisition of X-ray diffraction data. Nonetheless, the identity
of 3 is readily established from the characteristic spectroscopic
features and changes that accompany the desilylative
rearrangement of η1-PuCSiMe3 to cyaphide;16,20a viz. (i)
reduction in frequency of the CuP stretch (ΔνCuP ∼
−12 cm−1); (ii) loss of NMR resonances for silyl and −OTf moi-
eties; (iii) increase in frequency (ΔδP 48) for the phosphaalky-
nic P-centres, with reduced magnitude of the PCP–Pdppe coup-
ling (precluding its resolution); (iv) increased frequency (Δδc
92) for the cyaphidic carbon resonance, consistent with for-
mation of an organometallic linkage (cf M–CO, M–CN). These
data compare well with those we have noted previously16 and
those for Grutzmacher’s seminal complex [RuH
(dppe)2(CuP)];20a they also concur with data calculated for 3
using the PBE functional (Table 1).

The optimized gas-phase geometries of 22+ and 3 (see
ESI†)22 both exhibit slightly greater linearity about the metal
centres and bridge when compared with the solid-state struc-
ture of 22+, alongside marginally longer CuP linkages
(∼1.58 Å). These features are consistent with a prevalence of
packing effects in the solid state, as noted previously for
several η1-PuCR complexes,20,23 and for our precedent cya-
phide–alkynyls.16 The calculated CuP stretching mode for 3
(asym. νCuP 1224 cm−1) also compares well with experiment
(νCuP 1247 cm−1). Notably, the experimentally observed fre-
quency reflects a slightly stronger CuP linkage for 3 than in
[RuH(dppe)2(CuP)] (νCuP 1239 cm−1),20a attributable to com-
petition with the trans-alkynyl for Ru → π* donation. Indeed,
we noted this previously for cyaphide–alkynyls, though to a
greater extent (νCuP 1255, 1260 cm−1),16 suggesting a reduced
competition within the bimetallic scaffold.

The frontier orbitals of 22+ and 3 (Fig. 2) show similarities,
the HOMO in each case being dominated by the bridging
π-system (76%, 22+; 54% 3) with a modest contribution from
the metals (14% 22+; 26% 3). Notably, the HOMO of 3 also
includes contributions from πCuP (14%), which engage in out-
of-phase mixing with the Ru (dxy, dxz), πCuC and πAr orbitals,
consistent with some level of through-conjugation. The contri-

Fig. 1 Molecular structure of 22+; 50% thermal ellipsoids, hydrogen
atoms omitted, and phenyl rings reduced for clarity. Selected bond dis-
tances (Å) and angles (°): Ru1–P1 2.264(1), Ru1–C2 2.035(4), Ru2–P6
2.269(1), Ru1–C11 2.022(4), P1–C1 1.526(5), C2–C3 1.203(6), C3–C4
1.443(6)m P6–C12 1.526(5), C10–C11 1.214(6), C10–C7 1.441(6); P1–
Ru1–C2 175.23(13), P6–Ru2–C11 173.38(12), C1–P1–Ru1 179.3(2), C12–
P6–Ru2 177.3(2), Ru1–C2–C3 174.2(4), Ru2–C11–C10 174.5(4), C2–C3–
C4 171.7(5), C11–C10–C7 174.8(5).

Table 1 Comparative experimental and calculated NMR spectroscopic
dataa

δP(CP) ΔδP(CP)b δC(CP) ΔδC(CP)b

22+ 111.4 — 189.8 —
3 159.7 48.3 281.8 92.0
[{Ru}(C2R)(PuCSiMe3)]

+ 108.4 — 192.6 —
[{Ru}(C2R)(CuP)] (R = CO2Me) 168.5 60.0 279.1 86.5
[{Ru}(C2R)(PuCSiMe3)]

+ 112.8 — 188.2 —
[{Ru}(C2R)(CuP)] (R = p-An) 159.5 46.7 281.9 93.7
[{Ru}H(PuCSiPh3)]

+ 20a 143.8c — 175.1 —
[{Ru}H(CuP)]20a 165.0 21.3 287.1 112.0
22+ (calc)d 118.4 — 188.8 —
3 (calc)d 166.4 48.0 271.4 82.6

a {Ru} = Ru(dppe)2.
bΔδ on conversion from η1-PuCR to terminal cya-

phide. c Increase in δP due to SiPh3 vs. SiMe3.
dGIAO method with the

PBE functional (lanl2dz for Ru; 6-31G** for all other atoms); referenced
to H3PO4 or Me4Si at the same level of theory.

Scheme 1 Reagents and conditions: (i) CH2Cl2, 2 AgOTf, (ii) 2
PuCSiMe3 in toluene, 1 h.; (iii) thf, 2 KOtBu, 1 h. [Ru] = Ru(dppe)2.
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butions from πCuP increase appreciably in the mutually degen-
erate HOMO−1 and HOMO−2 (∼25%, see ESI†), lying 0.36 eV
below the HOMO, albeit without involvement of the bridging
arene (1%). In marked contrast, there is negligible contri-
bution (<10%) from the η1-PuCSiMe3 moieties of 22+ to any
occupied frontier orbitals, their involvement becoming signifi-
cant only in the appreciably stabilized HOMO−3 and
HOMO−4, lying ca. 1.4 eV below the HOMO. Finally, in respect
of 3, we note that the terminal cyaphidic lone-pairs manifest
in the HOMO−14 and HOMO−15, being stabilised by ca. 2 eV
relative to the HOMO. This is entirely consistent with expec-
tation, being similar to our previous observations,16 and those
for phosphaalkynes more generally.24 Additionally, NBO calcu-
lations suggest these to reside in orbitals of ca. 75% s and 25%
p character, as is typical of phosphaalkynes.

As is typical of complexes with the Ru(dppe)2 scaffold, the
latter dominates the virtual orbitals of 3, which are mostly
centred on the dppe ligands; the bridge contributes marginally
to LUMO+12 and LUMO+14, lying 4 eV above the HOMO. In
contrast, while the LUMO/LUMO+1 of 22+ are again dominated
by the Ru(dppe)2 framework, LUMO+2 is centred on the un-
saturated core, with appreciable contributions from π*CuP (60%)
and the bridge (15%). This is reflected in the electronic spec-
trum of 22+, assigned in comparison with those derived from
TD-DFT studies,25 calculating the first 200 excited states. This
offers a fair approximation of the observed UV spectra for 22+

and 3 (within limitations of the model), providing sufficient
correlation to assist in the assignment of some key features.
Thus, a feature at 350 nm (28 571 cm−1) includes significant
contribution from LLCT bands (πCuC → π*Ar and πCuC → π*CuP)
with marginal involvement of intraligand CT (πCuC → π*CuC),
alongside the dominant MLCT and LLCT associated with
excitation from the HOMO/HOMO+1 to low-lying dppe-based
orbitals. A second feature around 260 nm (38 462 cm−1) is

primarily composed of ILCT within the dppe scaffold
(<HOMO−10 → LUMO), but with additional contribution from
πCuP → π*CuP ILCT and πAr → π*CuP LLCT (HOMO−3→ LUMO+5).
In contrast, features in the UV/Vis spectrum of 3 around
370 nm (27 027 cm−1) and 250 nm (40 000 cm−1) are wholly
dominated by MLCT and LLCT transitions to the dppe
scaffold, with marginal contributions from ILCT within the
bridging π-framework; contributions from transitions to the
high-lying π*CuP (LUMO+36 to LUMO+39) are negligible.

The redox behaviours of 22+ and 3 were explored using cyclic
voltammetry (Table 2 and ESI†), both compounds exhibiting
two distinct oxidative events, which can be assigned (trivially26)
to sequential generation of the RuIII/RuII and RuIII/RuIII

species. For 22+ an initial quasi-reversible oxidation occurs at
significantly more anodic potential than the corresponding
(reversible) feature of 1, presumably a corollary of its cationic
nature. The second (irreversible) oxidation is similarly shifted
to more positive potential,27 and demonstrates an appreciable
stability for the mixed valence state [22+]+, Kc being comparable
in magnitude to that of [1]+ and related terminal alkynyls.19e,28

In the case of 3, two irreversible oxidations are observed,
the initial event showing a slight anodic shift relative to 1, and
indeed related alkynyl systems;19e,28 the second occurs at lower
potential than the corresponding oxidation of [1]+. On the
reverse scan, an irreversible reduction process is observed at
heavily cathodic potential. Notably, the diminished separation
of the oxidative events indicates a reduced stability for the
mixed valence state ([3]+) in comparison to [1]+ and, indeed,
related alkynyl complexes and [22+]+, Kc being two-orders
of magnitude lower than for its counterparts.19e,28

Notwithstanding, some stability is apparent, which implies
some retention of the electronic coupling characteristic of the
“Ru2{μ-(CuC)2C6H4-p}” scaffold, albeit diminished by the see-
mingly electron-acceptor character of the cyaphide ligand.

Conclusions

In conclusion, we have described the first isolable compound
to incorporate two ‘CuP’ moieties as part of the same conju-

Fig. 2 Frontier orbitals for 3 (left) and 22+ (right), with relative energies
(see also ESI†).

Table 2 Electrochemical (CV) data and comproportionation
constantsa,b

Epa/V Epc/V E1/2(ΔEpp)/V ΔEpa/V Kc
b

1 −0.268 −0.348 −0.308 (80) 0.351 8.9 × 105

0.081 0.004 0.043 (77)
22+ 0.705 0.565 0.635 (140) 0.290 0.8 × 105

0.995
3 −0.210c −0.780d — 0.190 1.7 × 103

−0.020c

a CH2Cl2/0.1 M [NBu4]PF6 using 1 mM analyte solutions at (25 °C),
with Pt disc (1 mm) working electrode, Pt wire counter electrode and
Ag wire pseudo-reference at 100 mV s−1. Potentials relative to the
FcH/FcH+ couple (0.00 V), referenced using internal Fc*H/Fc*H+

(−0.56 V (Epp 78 mV) vs. Fc/Fc+). b Kc = 10ΔE/59 mV at 298 K. c Irreversible
oxidation. d Irreversible reduction.
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gated scaffold, viz. [Ru2{μ-(CuC)2C6H4-p}(CuP)2] (3). The elec-
tronic spectrum shows a dominance of LLCT and MLCT tran-
sitions from the bridge and phosphacarbon moieties to the
dppe scaffold, with negligible ILCT within the π-system. The
redox properties of 3 are more interesting and suggest some
electron-acceptor character for the cyaphide ligand. While its
presence leads to irreversible redox behaviour and serves to
destabilize the mixed-valent state [3]+, the retention of elec-
tronic coupling within the bimetallic core provides initial con-
ceptual validation for the incorporation of the cyaphide ligand
into electro-active complexes. This will require engineering of
appropriately stabilizing ancillary scaffolds, a challenge with
which we are currently engaged.
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