Correction: Development of glycosynthases with broad glycan specificity for the efficient glyco-remodeling of antibodies

Sachin S. Shivatare, Lin-Ya Huang, Yi-Fang Zeng, Jung-Yu Liao, Tsai-Hong You, Shi-Yun Wang, Ting Cheng, Chih-Wei Chiu, Ping Chao, Li-Tzu Chen, Tsung-I Tsai, Chiu-Chen Huang, Chung-Yi Wu, Nan-Horng Lin and Chi-Huey Wong

The authors regret that there was an error in Fig. 3 in the original manuscript. The value for the FcγIIIA binding of Rtx-G16 in Fig. 3 was given as 5.4 but should be 33. The corrected version of Fig. 3 is presented below. There was also an error in the original caption. The last sentence in the caption referred to “maximal FcγIIIA binding”. This should have read “maximal FcγIIA binding”.

Correlation: Development of glycosynthases with broad glycan specificity for the efficient glyco-remodeling of antibodies

Sachin S. Shivatare, Lin-Ya Huang, Yi-Fang Zeng, Jung-Yu Liao, Tsai-Hong You, Shi-Yun Wang, Ting Cheng, Chih-Wei Chiu, Ping Chao, Li-Tzu Chen, Tsung-I Tsai, Chiu-Chen Huang, Chung-Yi Wu, Nan-Horng Lin and Chi-Huey Wong

The authors regret that there was an error in Fig. 3 in the original manuscript. The value for the FcγIIIA binding of Rtx-G16 in Fig. 3 was given as 5.4 but should be 33. The corrected version of Fig. 3 is presented below. There was also an error in the original caption. The last sentence in the caption referred to “maximal FcγIIIA binding”. This should have read “maximal FcγIIA binding”.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Fig. 3 Rtx-variants generated via Fc-glycosylation using Rtx-N as an acceptor and various glycan oxazolines as donors. (a) EndoS2 mutant required. (b) Binding between FcγRIIIA and Rtx-variants. Fold of enhancement of EC50 compared to commercial Rtx. (c) ADCC activities of selected Rtx-variants. Fold of enhancement of EC50 compared to commercial Rtx. EC50 in ng mL⁻¹ refers to the concentration of an antibody that gives 50% of the maximal FcγIIA binding or maximal cell killing.

Though the diagram is not directly related to the text, it visually supports the corrected information presented in the correction notice. The diagram illustrates the process of Fc-glycosylation, showing different Rtx-variants generated via Fc-glycosylation using Rtx-N as an acceptor and various glycan oxazolines as donors. The figure highlights the binding properties of these variants with FcγRIIIA and their ADCC activities, with EC50 values indicating the concentration of antibodies that give 50% of the maximal FcγIIA binding or maximal cell killing.