Issue 40, 2018

Atomic layer deposition and first principles modeling of glassy Li3BO3–Li2CO3 electrolytes for solid-state Li metal batteries

Abstract

Thin-film lithium solid electrolytes can serve as passivation layers, interfacial coatings, and enable 3D solid-state batteries. Here we present an Atomic Layer Deposition (ALD) process for synthesis of amorphous lithium borate-carbonate (LBCO) films. These films exhibit ionic conductivities up to 2.2 × 10−6 S cm−1, six times greater than previously reported for any ALD solid electrolyte. First principles calculations trace the high conductivity to contributions from enhanced rotational motion of the carbonate and borate anions achieved by precise control of Li and C content by ALD. The high conductivity, coupled with a wide band gap and electrochemical stability window, leads to a total area specific resistance (ASR) of <5 Ω cm2 for a 100 nm thick electrolyte and an ionic transference number >0.9999 from 0–6 volts vs. Li metal. The LBCO ALD solid electrolyte exhibits stability upon exposure to air, and in contact with both Li metal anodes and cathode materials. Thin-film full cells containing Li metal electrodes exhibit high coulombic efficiency for over 150 cycles with no capacity fading. These characteristics make glassy LBCO a promising new material for solid-state Li metal batteries.

Graphical abstract: Atomic layer deposition and first principles modeling of glassy Li3BO3–Li2CO3 electrolytes for solid-state Li metal batteries

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2018
Accepted
28 Sep 2018
First published
03 Oct 2018

J. Mater. Chem. A, 2018,6, 19425-19437

Author version available

Atomic layer deposition and first principles modeling of glassy Li3BO3–Li2CO3 electrolytes for solid-state Li metal batteries

E. Kazyak, K. Chen, A. L. Davis, S. Yu, A. J. Sanchez, J. Lasso, A. R. Bielinski, T. Thompson, J. Sakamoto, D. J. Siegel and N. P. Dasgupta, J. Mater. Chem. A, 2018, 6, 19425 DOI: 10.1039/C8TA08761J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements