Metallic layered germanium phosphide GeP5 for high rate flexible all-solid-state supercapacitors†
Abstract
In this study, high quality GeP5 crystals with two-dimensional (2D) layered structures and novel electrical conductivity of 2.4 × 106 S m−1 have been prepared under high-temperature high-pressure oriented growth technique (HTHP-OGT). The as-synthesized GeP5 nanoflakes, after liquid phase exfoliation, show promising potential for application as electrode materials in all-solid-state supercapacitors (ASSPs). The as-prepared GeP5-ASSP exhibits excellent electrochemical performances, including an ultrahigh scan rate of 1000 V s−1, a high specific capacitance of up to 35.86 F cm−3 at 5 mV s−1, a great power density of 397.24 W cm−3 and an energy density of 4.98 mW h cm−3. Moreover, the device can retain 83.7% and 88% of the initial capacitance retention at 180° bending and after 10 000 cycles, respectively, showing outstanding flexibility and superior cycling stability. These properties indicate the promising application of the metallic layered GeP5 for flexible energy storage devices.

Please wait while we load your content...