Issue 14, 2018

Organic photovoltaic cells – promising indoor light harvesters for self-sustainable electronics

Abstract

Photovoltaic cells are attracting significant interest for harvesting indoor light for low power consumption wireless electronics such as those required for smart homes and offices, and the rapidly-growing Internet of Things. Here, we explore the potential of solution processable, small molecule photovoltaic cells as indoor power sources. By optimizing the solvent vapour annealing (SVA) time for the photovoltaic layer, a balance between its crystallization and phase separation is obtained, resulting in a record power conversion efficiency (PCE) of over 28% under fluorescent lamps of 1000 lux, generating a maximum power density of 78.2 μW cm−2 (>10% PCE under AM1.5G). This high indoor performance surpasses that of silicon based photovoltaic cells, and is similar to that of gallium arsenide photovoltaic cells. Besides, the ratios of the voltage at the maximum power point (MPP) to the open circuit voltage are similar from indoor lighting to one sun conditions, which is unique and allows a less power consuming method to track the MPP for a broad range of light intensities (potentially attractive for wearable photovoltaics). New insight into the effect of SVA on the indoor and one sun performance is provided using advanced optoelectronic characterization techniques, which show that the mobility-lifetime products as a function of charge carrier density can be correlated well with the performance at different light levels. Our results suggest that organic photovoltaic cells could be promising as indoor power sources for self-sustainable electronics.

Graphical abstract: Organic photovoltaic cells – promising indoor light harvesters for self-sustainable electronics

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2017
Accepted
18 Dec 2017
First published
18 Dec 2017

J. Mater. Chem. A, 2018,6, 5618-5626

Organic photovoltaic cells – promising indoor light harvesters for self-sustainable electronics

H. K. H. Lee, J. Wu, J. Barbé, S. M. Jain, S. Wood, E. M. Speller, Z. Li, F. A. Castro, J. R. Durrant and W. C. Tsoi, J. Mater. Chem. A, 2018, 6, 5618 DOI: 10.1039/C7TA10875C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements