Issue 1, 2018

Surface texturing and dielectric property tuning toward boosting of triboelectric nanogenerator performance

Abstract

Triboelectric nanogenerators (TENGs) have revealed widespread success in converting ambient mechanical energy into electric power. However, the challenge remains to improve the output performance for extensive applications. Herein, a strategy of combining surface texturing and dielectric constant control is developed to enhance the output performance of poly-dimethylsiloxane (PDMS)-based TENGs. The introduction of highly dielectric particles significantly enhanced the dielectric constant and surface charge potential of the PDMS film, supported by both experimental analysis and COMSOL simulation. With an optimized weight ratio, an output voltage of ∼390 V (peak to peak), a short-circuit current density of ∼170 mA m−2, and a charge density of ∼108 μC m−2 were obtained, corresponding to the peak power density of 9.6 W m−2, showing a 10-fold power improvement compared with flat PDMS-based TENGs. This work demonstrates a promising strategy for exploring high performance triboelectric generators.

Graphical abstract: Surface texturing and dielectric property tuning toward boosting of triboelectric nanogenerator performance

Supplementary files

Article information

Article type
Communication
Submitted
31 Aug 2017
Accepted
23 Nov 2017
First published
23 Nov 2017

J. Mater. Chem. A, 2018,6, 52-57

Surface texturing and dielectric property tuning toward boosting of triboelectric nanogenerator performance

Z. Fang, K. H. Chan, X. Lu, C. F. Tan and G. W. Ho, J. Mater. Chem. A, 2018, 6, 52 DOI: 10.1039/C7TA07696G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements