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Equally probable positive and negative Poisson’s
ratios in disordered planar systems

Christophe M. Verstreken, (2°° Kevin J. Chalut®® and Raphael Blumenfeld*©

Auxetic materials, characterised by a negative Poisson’s ratio, have properties that are different from most
conventional materials. These are a result of the constraints on the kinematics of the material's basic
structural components, and have important technological implications. Models of these materials have been
studied extensively, but theoretical descriptions have remained largely limited to materials with an ordered
microstructure. Here we investigate whether negative Poisson’s ratios can arise spontaneously in disordered
systems. To this end, we develop a quantitative description of the structure in systems of connected basic
elements, which enables us to analyse the local and global responses to small external tensile forces. We find
that the Poisson’s ratios in these disordered systems are equally likely to be positive or negative on both the
element and system scales. Separating the strain into translational, rotational and expansive components, we
find that the translational strains of neighbouring basic structural elements are positively correlated, while their
rotations are negatively correlated. There is no correlation in this type of system between the local auxeticity
and local structural characteristics. Our results suggest that auxeticity is more common in disordered

rsc.li/soft-matter-journal

1 Introduction

Materials with a negative Poisson’s ratio (PR), called auxetics,
have positively correlated horizontal and vertical strains, and
thus expand (contract) in both directions when stretched
(compressed)." Various such materials can be found in nature,
including polymers, foams, minerals, and even nuclei of stem
cells.”? A range of auxetic structures has also been made
artificially. Auxetic behaviour in disordered materials is not
uncommon; for example, a crumpled ball of paper expands
in all directions when stretched between two fingers. Yet, most
investigations of the relation between internal structural
characteristics and large scale auxeticity have focused on
ordered systems.® ™ As such, few studies exist of auxeticity in
disordered systems, including behaviour of three-dimensional
folded sheets**" and perturbing slightly ordered structures by
defects.'®"” Thus, auxeticity of disordered structures is still far
from fully understood.

We address this problem by modelling auxeticity in isostatic
structures that consist of minimally connected constituent units
that can freely fold, expand and contract."®"? Isostatic systems are
statistically determinate—a particularly convenient property
for our purposes, as we can relate the stress to the local
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structures than the ubiquity of positive Poisson’s ratios in macroscopic materials would suggest.

microstructure by calculating the inter-element forces directly,
without requiring elasticity theory. This feature also makes these
structures ideal for modelling the jamming transition in systems
in which the elements are macroscopic grains or colloids. We use
arrangements of isostatic systems to analyse random disordered
isostatic systems, and investigate the microscopic drivers of
auxeticity on the local and global scales.

To be isostatic, a mechanically stable structure has only to
satisfy a minimal connectivity criterion: that the mean number
of force-carrying inter-element contacts per element is equal
to a specific value z.”° Generically, z, = d(d + 1) and d + 1 for
d-dimensional systems of frictionless and frictional non-
spherical elements, respectively.”’ Analysis of stress transmission
in these materials explains the ubiquity of non-uniform stress
states exhibited by particulate media.>** A first-principles con-
tinuum stress theory for two-dimensional isostatic granular media
has been developed, based on a parameterisation of the inter-
element forces into ‘loop forces’, where loops are the elementary
voids, or cells, enclosed by individual elements.?**”

Since z, = 3 in two dimensions, we choose to focus on planar
systems of triangles, connected to nearest neighbours at the
vertices by conceptual frictionless hinges, as illustrated in
Fig. 1. For later use, we assign a direction to the edges of each
triangle, ¢, making it a vector, 7, with ¢ being the cell that the
edge borders. Thus defined, these vectors circulate clockwise
around the triangles.>® For each 7., we define a dual vector Ry,
extending from the centroid of triangle ¢ to the centroid of
cell c. These two vectors form the diagonals of a quadrilateral,
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Fig. 1 Close-up view of individual triangles in our system. The edges of
triangle t are made into vectors, FQ, that circulate the triangle clockwise.
These vectors make a disordered graph of randomly shaped triangles,
connected to their nearest neighbours at the vertices. The vector ﬁcf
extends between the centroid of triangle t and that of its neighbouring cell, c.
The vectors re and ﬁct are the diagonals of a quadrilateral volume element,
which is called quadron.?® Inter-triangle forces (red) are calculated as the
difference between the loop forces TC (blue) of neighbouring cells.

known as a quadron.”® The quadrons are fundamental volume
elements that tessellate the system space perfectly. Moreover,
the structure of each quadron can be quantified unambiguously
by a local structural tensor, 7o ® Ry, allowing us to quantify the
local disordered structure anywhere in the system.>®*®?° This
is convenient for relating local structural characteristics to
local PR.

In mechanical equilibrium, the forces of triangles on their
neighbours (inter-triangle forces or ITFs), can be parametrised
using loop forces, with one loop force i per cell enclosed by
triangles. As such, the force that triangle ¢ exerts on its neighbour
¢’ is the difference between the loop forces of the two cells, ¢ and ¢/,
straddling the common joint of these triangles® (see Fig. 1):

ﬁt’ = ic’ - 7c (1)

By construction the loop forces automatically satisfy force
balance on each triangle, leaving only the torque balance
conditions. This cuts by two thirds the number of equations
to solve, considerably reducing the computational effort.

By calculating the fabric tensor, the quantitative description of
the local structure of our isostatic systems can be coarse-grained to
the overall system.”**”*° Furthermore, the fabric tensor is related
to local rotational strains, and can be used to identify and isolate
rotational strains in auxetic materials.'®"® In this paper, we extend
this latter development and apply it to random systems.

2 Theory

We first determine the number of equations required to
calculate the inter-triangular forces in a disordered planar
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system consisting of N (>1) triangles. The contours of the
triangles form a graph of N, connected vertices, N, edges, and
N¢ faces. Identifying the N}, boundary triangles in this structure,
it is convenient for the purpose of our analysis to enclose this
graph within a frame to which the boundary triangles are con-
nected by one of their vertices. For such a graph, Euler’s topo-
logical relation for two-dimensional graphs in the plane is,**

Ny — N.+Nf=1, (2)

where N,, N. and N; are the numbers of the graph’s vertices,
edges and faces, respectively.

In our graph, the vertices are the analogues of the contact
points in granular assemblies. The edges are the triangle edges
and the additional N, edges formed by the frame. The faces
consist of the triangle faces and the internal elementary voids
(called cells or loops here), which include the additional N, voids
formed by the frame. Putting these numbers together, we have:
N¢= N, + N + N, faces, (the N, internal cells, the N loops around
each triangle and the N, boundary cells), N. = 3N + N, and N, =
(3N + Np)/2. Substituting these into Euler’s relation (2), we have

N — Ny

Ne=1+=— 3)

Since one loop force is associated with each cell, there are
N + Ny, loop forces altogether, which yield, using (3), 2 + N + N,
unknowns. Furthermore, each ITF is defined as the difference
between two loop forces, meaning we can fix one of the loop forces
at will.”® This reflects the nature of the loop forces field as a
potential field, of which the local ITF is the gradient.*® Having
exactly N torque balance conditions to determine the loop forces,
we therefore need to fix N,/2 boundary forces on the vertices
connected to the bounding frame. This leaves an exact set of
equations to solve for the loop forces. We can then solve for the
internal N/2 loop forces, from which we can determine the ITFs.

Specifically, we can define the following N x N matrix A,
loop forces vector X, and boundary forces vector B.>* As before,
the first N rows correspond to the torque balance on all N
triangles, the next N}, rows correspond to the boundary forces
on Np/2 vertices, and the final 2 rows normalise the 2 force
components of the first loop force:

0 0 0 —I 10 ’{lo 0 —riN VY,N
0 wr e =136 0 34 Tas 0
—Iy1 *”}1;/,1 0 0 —Iyal 'fv,m 0
A=lo o0 1 0 -1 0 0
0 1 0 -1 0 0 0
1 0 0 0 0 o0 0 0 0
0 1 0 0 0 O 0 0 0

(4)
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1

o
fio (5)

and

we have
Ax =B (7)

We can solve for the loop forces by Gaussian elimination.

3 Model and methods

We generated numerically 15 000 disordered planar assemblies
of triangles as model systems. First, we distributed 200 points
randomly within a rectangle of 2000 x 2000 in arbitrary units.
We then generated a Voronoi tessellation around the points of
the system, obtaining a planar cellular structure, with exactly
three edges emanating from each node. Connecting the mid-
points of these edges around each node produces a disordered
assembly containing about 300 triangles in each system. With
exactly 3 = d + 1 contacts per triangle, we made this system
isostatic by imposing one force on every other boundary
triangle vertex. We then used (7) to calculate the loop forces
(see, e.g. Fig. 2a) and, from those, the ITFs by (1). Typically,
the solutions contain regions in which the loop forces have
smoothly-changing directional orientation, separated by
sharp gradients, as illustrated on the right side of Fig. 2a. The
sharp gradients correspond to localised force chains.?®?”343°
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These force chains can be observed experimentally in granular
systems.* %

Starting from the initial stress state, we calculated the mean
force amplitude at a vertex for each system, f, and applied two equal
and opposite small tensile forces, of amplitude about §f = 1 x
10~ %, antipodally on the left and right boundaries, along the x-axis
near the middle of the system (shown as blue forces in Fig. 2).
We then calculated the changes in the loop forces and the ITFs.

The changes in the ITFs give rise to vertex displacements,
resulting in triangle rotations, translations and expansions
(or contractions), such that the triangle edges remain straight.
It should be noted that the static determinacy constrains all the
degrees of freedom and, therefore, the vertex displacements are
only the result of the triangles’ elastic compliance. In the absence
of inertial effects, each vertex’s displacement is proportional to
the force on it, and we expect vertices to displace towards the
external tensile force it is closest to. This divides the system
naturally into two halves with an imaginary half-line at x = 0. The
vertex’s displacement is then in the direction of the force pulling
toward the closest boundary, scaled by a proportionality factor {
that is 0 on the half-line and 1 on the corresponding boundary.
A typical example of a displacement field is shown in Fig. 3a.

The displacements data were then recorded for later analysis,
increased the magnitudes of the boundary tensile forces, calcu-
late the new ITFs, and repeated the process. The accumulated
displacements resulting from 100 successive repetitions of the
process are shown in Fig. 3b.

In the following, we refer to the gradient of the displacement
as strain, for short, although this term is normally reserved for
its symmetric part. The strain can be defined for individual
triangles and can be separated into a translational, an expansive
and a rotational component:

_ .trans exp rot
g = £ + 7P + g%, (8)

In our system of non-rigid triangles, all these components are
relevant,'® while in systems consisting of rigid triangles, only
the translational and rotational components contribute to the
total strain.®
The translational strain captures the displacements of the
triangles’ centres of mass and it is defined as
(3R),

trans
Eraf =75 = )
i (R, - RO)/;

where R, is the vector from the origin to the centroid of triangle ¢,
R, is the position of the entire system’s centre of mass, and &R is
the mean displacement of the vertices of ¢. The expansive compo-
nent of the strain depends on the outward or inward displace-
ments of the vertices of the triangle, projected on the vector p;;

(85— (58)) -5, .

SRS = ,
o] o]

(10)

where i =1, 2, 3 are the three vertices of the triangle. The expansive
strain is then

exp exp 6Rti,c¢
8141/? - 81’,1[)‘ - .

(1)
7 Pip
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Fig. 2 The force field response to two antipodal tensile forces, applied at the centre of opposite boundaries (in blue, not to scale). Shown in red are:

(a) the loop forces, TC; (b) the corresponding ITFs.
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Fig. 3 (a) Vector gy points from the centroid of triangle t to its vertex i, and

this vertex is displaced by 8py. (b) Displacement of vertices in response to
100 small increments of the boundary forces.

Each triangle hosts exactly three quadrons, as shown
in Fig. 1, each described by a structure tensor C, = 7., @ R...>®

This journal is © The Royal Society of Chemistry 2018

The triangle’s structure tensor is the sum of the structure
tensors of its three quadrons:

3
C, = ch,,
c=1

The antisymmetric part of this tensor gives the (generically, non-
convex) area associated with the triangle’s three quadrons, 4,,

1
5lC-

(12)

C/] =40, (13)

where C! is the transpose of C; and @ is the two-dimensional /2
rotation matrix (the Levi-Civita operator). The symmetric part of C,,

Q =5[C+ ], (14)

describes the local rotation of the triangle relative to the global
mean.”®*” It has also been shown®' that the rotational strain
satisfies

(15)

In terms of the triangle variables, the rotational component of the
displacement is the displacement perpendicular to the direction of
the expansion

(6p; — (3P)) % p; "

SR = (16)
l lpil
Therefore, the rotation angle of vertex i is
3R,
0; =tan“| ~ ’|, (17)
|7l
and the rotational strain of the entire triangle is
1
2200
Sl:;tﬁ =— A, : (18)
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4 Results

Defining the PR of triangle ¢ as

Vp = &, y/ Et,xx3 (19)

provides a local definition of the PR and makes it possible to
study the spatial distribution of this property across the system.

In Fig. 4a, we plot a histogram of the local PRs for data
collected from over 40 000 triangles from 100 different system
realisations. It is broadly symmetric, with the mean and stan-
dard deviation being —0.2 and 1.8, respectively, demonstrating
that there is hardly any sign preference for the local PRs.

We also computed the global PR of each system, defined as

AL,/L,

AL./L. Lo (20)

Vsys =
Here, L, is the system extension in the o direction, defined as
the difference between the mean positions of the vertices at
opposite boundaries, and AL, is the mean change in that
distance. In Fig. 4b we show the histogram of v, across
15000 systems of 300 triangles each. This histogram is also
symmetric, with its mean and standard deviation 0.9 and 7.0,
respectively. Interestingly, this histogram’s standard deviation
is much larger than for the individual triangles, which is a
result of its tails falling slower than exponential, although
faster than algebraically.

To examine the dependence of these results on system size,
we repeated the simulations for systems of sizes ranging from
N =150 to N = 1050 triangles each. We find that the distributions’
standard deviations are an order of magnitude larger than their
means and are broadly symmetric around 0, as can be observed in
Fig. 4. Zooming in on the means and standard deviations of the
global PR distributions over the 7-fold size variation, we observe
that the mean decreases slightly with N, from 0.82 to 0.66. This
decrease is not statistically significant and is also consistent with
no change within 95% confidence. In contrast, the standard
deviation increases significantly with size by about 53%, from
6.31 to 9.70, indicating, with 95% confidence, that the width of
the PR value distribution increases proportionally to N.

To gain insight into the relationship between the Poisson’s
ratio and the local structure, we investigated the local correla-
tions between structural, elastic and strain properties, with the
structural characteristics quantified using the above quadron
description. To this end, we first express the stress on triangle ¢
in terms of the loop forces of the cells surrounding it.>® The
increase in the boundary forces gives rise to the following
change in the stress

30, = AL,Z 8 @ F. (21)
Given a triangle’s stress and strain, we also calculated its
compliance matrix, S;, using o, = Ss;.

In particular, we correlated the traces of the different strain
components of individual triangles with the trace of that
triangle’s total strain, for 100 systems and 3 x 10* triangles.
Irrelevant outliers, within the 2% highest and lowest strains,
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Fig. 4 (a) Histogram of the PRs of individual triangles, 14, calculated from
over 40 000 triangles from 100 simulated systems. (b) Histogram of the PR
of global systems, calculated from over 15000 systems of 300 triangles
each. (c) Mean (blue; left axis) and standard deviation (red; right axis)
of system of 150 to 1050 triangles each. The mean is fitted well by
PR = —1.8 x 107*N + 0.8 and the standard deviation by Gpg = 3.8 x
103N + 5.7, with N the number of triangles.

were disregarded. We find that the expansive component is the
dominant contributor to the symmetric part of the strain, with

This journal is © The Royal Society of Chemistry 2018
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triangle’s: (a) expansive and total strain; (b) translational and total strain;
(c) rotational and total strain. In (d) we show correlation between the trace
of a triangle’s expansive strain and the average of the trace of the
expansive strain components of the triangle’'s neighbours.

a correlation of y = 0.93 between Tr{ef*?} and Tr{{*} (Fig. 5a).
The second largest contributor is the translational strain, with a
correlation of y = 0.24 between Tr{e{™™"*} and Tr{{*"} (Fig. 5b).
In contrast, there is hardly any correlation between the rota-
tional component and the total strain, y = 0.03 (Fig. 5c¢). As
expected, the importance of expansion in the overall strain of
individual triangles causes a negative correlation of y = —0.10
between the expansive strains of neighbouring triangles
(Fig. 5d). The translational strains of neighbours are positively
correlated, with y = 0.67, which is induced by our method of deter-
mining vortex displacements. Interestingly, while the rotational
strain does not correlate well between nearest neighbours, with
y = —0.06, the rotation angle of neighbours is anti-correlated, with
y = —0.35, which is an aspect of the ‘anti-ferromagnetic’-like
rotational nature of such systems.'*"394!

We also investigated the correlations between the one-triangle
PR and local structural characteristics, including the triangle:
size, shape, quadron sizes, displacement, and any of the strain
contributors. We found no significant correlation between any of
these quantities.

5 Conclusions and discussion

We studied the poorly understood issue of auxetic behaviour
in disordered structures, modelled here by planar statically
determinate, or isostatic, systems of triangular elements.
Specifically, we addressed the question of whether a negative
Poisson ratio (PR) can emerge spontaneously without design or

This journal is © The Royal Society of Chemistry 2018
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whether a positive PR is more common, as its ubiquity in
macroscopic materials might suggest.

We simulated 15000 disordered planar systems, each of
about 300 randomly-shaped connected compliant triangles,
stretched them incrementally, and computed the PR for each
triangle and for the entire assembly. Our main finding is that
positive and negative PRs are almost equally likely to occur in such
disordered systems. This conclusion holds on both the triangle
scale (Fig. 4a) and the entire system (Fig. 4b). This suggests that
large-scale systems with this layout would be almost PR-neutral,
displaying a behaviour that is neither conventionally elastic nor
fully auxetic. This result may seem counter-intuitive in view of the
prevalence of positive PRs in macroscopic structures. However, it
reinforces that these are not conventional elastic systems and that
PR of such structures should be carefully analysed.

The mean contributions of the translational, expansive and
rotational strains to the total strain of a triangle were found to
be 23.2 + 0.05%, 77.3 £ 0.05% and 0.0 £ 0.05%, respectively.
The corresponding correlations between those and a triangle’s
total strain were 0.24 £ 0.005, 0.93 4 0.005, and 0.03 =+ 0.005,
respectively. We also found a significant anti-correlation of
—0.10 between the expansive strains of neighbouring triangles,
as well as a considerable anti-correlation of —0.35 between their
rotations. The latter is directly related to antiferromagnetic-like
rotational dynamics in such systems, discussed in granular
systems.>*"*! We emphasise that, by imposing static deter-
minacy, we constrained movement in our systems and, had the
triangles been rigid, they would have no degrees of freedom to
deploy and not displace. Thus, the displacements we observe
arise from local expansions and contractions, which fits well
with the correlations we observe.

We also searched for correlations between the sign of the PR
and local microstructural descriptors. Such correlations, if found,
could lead to informed design of auxetic disordered structures.
However, we found none in this study. It is possible that such
correlations have been washed out by the strong anti-correlation
between nearest-neighbour expansive strains. To study this issue
in more depth, a similar study should be carried out on systems
of fully rigid triangles® with fewer boundary constraints. We
conjecture that such systems would show stronger correlations
between the local PR and the translational and rotational strains.
The latter is directly related to the local structural rotational
disorder, defined in ref. 26 and 27 as the symmetric part of the
local tensor Q/7) and we therefore expect that such systems
would show local structure-PR correlations.
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