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Frustrated packing in a granular system under
geometrical confinement

Sára Lévay, †*a David Fischer,†*b Ralf Stannarius, b Balázs Szabó,c

Tamás Börzsönyic and János Törökad

Optimal packings of uniform spheres are solved problems in two and three dimensions. The main difference

between them is that the two-dimensional ground state can be easily achieved by simple dynamical

processes while in three dimensions, this is impossible due to the difference in the local and global optimal

packings. In this paper we show experimentally and numerically that in 2 + e dimensions, realized by a

container which is in one dimension slightly wider than the spheres, the particles organize themselves in a

triangular lattice, while touching either the front or rear side of the container. If these positions are denoted

by up and down the packing problem can be mapped to a 1/2 spin system. At first it looks frustrated with

spin-glass like configurations, but the system has a well defined ground state built up from isosceles

triangles. When the system is agitated, it evolves very slowly towards the potential energy minimum through

metastable states. We show that the dynamics is local and is driven by the optimization of the volumes of

7-particle configurations and by the vertical interaction between touching spheres.

1 Introduction

The geometry and efficiency of packing of granular ensembles
is one of the fundamental problems in their description. Even
for regular grain shapes, our understanding of packing struc-
tures is by far not complete, irrespective of considerable
advances in recent years (e.g. ref. 1–6). Several sub-problems
have to be distinguished, among them is the question of the
maximum density and other characteristics of a randomly
packed arrangement, the so-called random close packing, or
the quest for the maximum achievable packing density in
regular structures. In this study, we consider a system that is
neither completely random nor completely ordered. After filling
a flat container with monodisperse spherical particles, the
boundary conditions force the grains into an almost ordered
lattice. The system adopts a state intermediate between perfect
order and complete randomness.

The densest regular arrangement of monodisperse spheres
is seemingly among the simplest packing problems, but its

solution took scientists considerable efforts. Kepler’s conjec-
ture that monodisperse spheres cannot be packed more densely
than the hexagonal close-packed (HCP) or face-centered cubic
(FCC) crystal structures was finally proved by Hales,7 almost
four centuries later. The question of densest packing is trivial
for identical disks in two dimensions (2D), where a regular
triangular grid is the densest configuration, maximizing the
packing density both locally and globally. In 3D sphere pack-
ings, however, the locally optimal structures are tetrahedrons,
which are not space-filling. If dimension is further increased,
the crystallization becomes ever rarer.8 Boundaries and restrict-
ing container sizes further complicate the analysis of packing
problems, even in simple container geometries like cylinders or
cuboids.9–16

Narrow containers are known to favour glass or jammed
state where the particle displacement is limited by caging
effect. This transition along with the possibility of a Gardner
transition could be of importance.17,18

The system studied here, a flat cuboid cell, is at the transi-
tion from 2D to 3D.14 If the cell thickness D (in direction y) is
exactly equal to the particle diameter d, the best packing is the
regular equilateral triangular lattice. However, as soon as the
container is chosen slightly thicker than the particle diameter,
D = d + d 4 d, the packing can be optimized using the third
dimension by distributing individual spheres between posi-
tions at the front and rear cell plates19,20 (Fig. 1).

The ground state of such a system is not trivial and strongly
depends on the width of the container.19,20 If it is only slightly
larger than the particle diameter, the optimal packing in the x–z
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plane is still a triangular lattice. This is indeed realized, usually
with only few lattice defects. The lattice constant in the tri-
angular lattice between two particles depends on the placement
of the particles: if they are touching the same wall the distance
is the particle diameter d. If they are located at opposite walls,

the distance becomes d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2
p

. If one replaces the terms ‘front’
and ‘rear’ by up and down and considers the particle positions
as spins, the system looks analogous to an antiferromagnetic
Ising model on a triangular lattice,21 which is known to be
frustrated. However, our system is not driven by Ising
dynamics. The problem of frustrated geometry finds an analogy
for example in colloidal layers as well.22 For connectivity with
this context and with previous work on the same granular
packing problem,16 we will refer to the connection between
neighbouring spheres positioned at the same container side as
‘frustrated bond’, even though the treatment proposed in this
paper is based exclusively on the related geometry of the
individual lattice cells.

The effect of the third dimension on the packing efficiency is
evident mathematically when one considers the projection of
the triangles formed by the centres of mass of three touching
spheres onto the cell plane. Thus in the present work we
consider this area rather than the volume determined by the
centres of mass of particles. The lattice contains two types of
such triangles: (i) an equilateral one when all three spheres are
located at one cell plate. This triangle has a side length of d and

an area of A ¼
ffiffiffi
3
p

d2=4 (black triangle in Fig. 1). (ii) An isosceles
triangle if one of the spheres is located at the cell plate opposite

to the two others. The latter one has a reduced area A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3d2 � 4d2
p

d=4oA with d = D � d { D (red triangle in
Fig. 1). Thus the optimal packing is achieved with only isosceles
triangles.

The space cannot be arbitrarily filled by identical isosceles
triangles, they must be placed in a well defined pattern to be
space filling, thus structures larger than the triangle will be
important for the system. Such configurations were already
defined in an earlier publication16 as shown in Fig. 2. Later
when referring to a configuration in this work we will use the

numbering from 1 to 13 as also introduced in Fig. 2. In previous
studies of similar systems,16,22–24 the 13 configurations were
designated by two-digit numbers, where the first digit refers to
the number of frustrated bonds of the central site, the second
one distinguishes three sub-configurations of each of the
configurations with 2, 3, and 4 frustrated bonds. The introduc-
tion of these sub-categories for sites with a given number of
frustrated bonds was then motivated by the employed model,
for which the number of frustrated bonds per site is an
essential parameter. Here, we list this notation to facilitate
the comparison with the earlier studies.

With increasing distance between the parallel cell plates, the
distortion of the triangular mesh increases, and finally a gradual
transition to complex 3D packing structures takes place by
successive morphological transformations.14,25–27 Evidently, there
is no general proof that the system reaches the optimum packing
in this geometry so far, but a substantial amount of experimental
data have been collected in colloidal systems.14,19,22–29

It has been shown earlier, that identical spheres packed in a
cell with a thickness D E 1.3d develop geometrically frustrated
structures.16 After initial preparation of the cell, the spheres
adopt a distorted triangular lattice where even after very long
mechanical agitation periods, an optimal regular crystalline
packing is not achieved. The analogue of a 3D crystallization
into HCP or FCC would be the organization of the beads into
alternating bands of spheres touching the rear or front faces of
the cell in our flat container. This configuration is practically
never reached in the experiment. The frustration arising from
incompatible local band structures and the energy free inter-
face is most likely the reason for the long metastable states.

This study focuses on modelling the evolution of the system
after validation by experimental and simulation results with the
aim to discover the driving mechanism behind the evolution of
the system and to give a possible answer for the apparent
stalling of the dynamics.

2 System
2.1 Experimental setup

The setup consists of a vertical sandwich cell which is filled with
about 5700 precision glass spheres (diameter d = 2.0 � 0.02 mm)

Fig. 1 Schematic drawing of the experiment. Spheres touching the front
of the cell are labelled dark, spheres touching the rear side are drawn
bright. Left: Locally, a nearly regular triangular lattice is formed except of
lattice defects. The black and red triangles show examples of the two local
triangular configurations described in the text. Right: The side view shows
schematically only the first layer of visible spheres. The lattice distortion is
exaggerated.

Fig. 2 Designation of the 13 local configurations of the packed spheres
tabbed by the number of diameter length bonds of the central site. Dark
and bright fillings indicate their position at opposite cell plates.
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and then carefully placed on a plate that can be vibrated by voice
coils. A picture of the experimental setup is shown in Fig. 3. The
left-hand side shows the setup in viewing direction of the camera,
normal to the cell plane. The right-hand side shows the camera,
the cell and the voice coil activating vertical vibrations.

The thickness D of the cell is chosen to be 1.3 times the
diameter d of the spheres (A0 = 0.94A), the other two dimensions
are large with respect to the particle diameter (approximately
70 � 70 spheres). The cell is placed upright, so that the most
dense packing of the spheres is energetically favoured. After
gravitational filling from the top, one finds a nearly ordered
arrangement, consisting of domains with a deformed triangu-
lar basic grid (Fig. 4(a)). In this initial state, there are multiple
domains of spheres in contact with each other, separated
by grid defects where spheres have less than 6 neighbours.
By agitation (here in the experiment a harmonic vertical vibra-
tion of the cell), these defects can be largely annealed, and a
denser packing is reached with stationary statistical properties
(Fig. 4(b)).

The front side of the cell is photographed and the distinc-
tion of front and rear spheres is easily performed with image
analysis. From the evaluated particle positions, we group the
surroundings of each sphere with 6 neighbours into 13 differ-
ent configurations which are shown in Fig. 2. Two particles are
considered as neighbours if the distance between them is
smaller than a particle diameter plus a tolerance of 5%. Dark
and bright fillings indicate the positions of the spheres
(‘f’ or ‘r’). Each configuration appears twice, one with the central
sphere at the front face (black meaning ‘f’) and one with the
central sphere at the rear face (black meaning ‘r’), and of course
the configurations appear in different orientations, configu-
ration 7 additionally in mirrored form (see Table 1 below).

2.2 Simulation setup

We used the LAMMPS30 discrete element method (DEM) simu-
lations to study the system. Since only the relative sizes of
sphere diameter and cell gap play a role, we use a dimension-
less length scale in the simulations, all lengths are given in
units of the sphere diameter. Each simulation involved 6000

monodisperse particles (diameter d = 1 in dimensionless units).
This results in a system with dimensions of approximately
70 � 70 (x and z directions), corresponding to the experimental
conditions. The cell thickness (direction y) was set to D = 1.3.
Periodic boundary conditions were applied in the x direction.
Some simulations were repeated with vertical walls similar to
the experiment, but no quantitative difference was observed.
The particle–particle friction coefficient was set to m = {0.05,0.1}. The
low friction coefficient was used to counterbalance the increasing
contact time due to the softness of particles in DEM simulations.
The stiffness of the particles was k = 105 in units of rgd2, where r
is the particle density, and g is the gravitational acceleration.
This stiffness is much (5–6 orders of magnitude) lower than that
of the glass.

In order to prepare the sample, two alternative methods
were employed: (i) the particles were placed randomly in a cell
with a height of about 2–3 times the height of the resulting
granular bed, or (ii) an almost regular triangular lattice was
created (the lattice constant was d = 1) with random positions
in the y direction. The simulation was started with the intro-
duction of gravity. The initial configuration was obtained when
all particles got to rest. These two preparation methods differ in
the sense that the first method results in a system with more
lattice defects.

Due to the softness of the particles, high frequency agitation
is absorbed by the first few particle layers. Relaxation by high

Fig. 3 Front (left) and side view (right) of the experimental setup. The cell
is illuminated in reflection. It can be exposed to vertical vibrations with
frequencies up to 100 Hz and amplitudes of a few mm. The acceleration
sensor records the excitation dynamics.

Fig. 4 Snapshots of an experiment. (a) Typical initial configuration of the
spheres after gravitational filling from the top. (b) Typical configuration
after 100 shaking intervals of 5 sinusoidal shakes each, at a maximum
vertical acceleration of 3.0 g. Due to the illumination technique particles
touching the front face appear darker than those touching the rear face.
Red and blue regions are discussed below.

Table 1 Number of equilateral (large) triangles in the configurations, and
the possible different realizations. Note that the only non-mirror sym-
metric object is configuration 7, which has the largest number of 12
different realizations

Configuration 1 2 3 4 5 6 7

Equilateral D 0 0 1 0 0 2 1
Number of permutations 1 6 6 6 3 6 12

Configuration 8 9 10 11 12 13

Equilateral D 0 3 2 2 4 6
Number of permutations 2 6 6 3 6 1
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amplitude shaking takes simply too long, therefore we chose
another method to simulate the agitation: the particles were
lifted up with a given displacement of G = 2d. . .10d and were
then released to fall down and relax. This method provided the
most efficient way to mimic the evolution of the experimental
system.

3 Results

In order to demonstrate the evolution of the system we take
Fig. 4(a) and (b) as an example, where the experimentally
observed initial and later, partially ordered configurations are
shown. Generally, agitation leads to a more ordered system,
where most of the lattice defects disappeared. Moreover the
system develops alternating stripes of particles touching the
front and the back plane in respectively. In colloid systems
the ground state was found to be similar but with perfectly
straight alternating stripes.19 We will show that such a perfect
order is not needed for the ground state. Such alternating
stripes were found already in granular systems, namely in
two-dimensional chute flows where the alternating stripes are
composed of particles rotating in different directions.31

Analyzing the inner (blue) and outer (red) regions of Fig. 4(b)
separately, we find that the outer part became a nearly perfect
layered crystal, while the central region changed less during
agitation. This might be due to the initially lower number of
lattice defects in the central region. Altogether the decreasing
number of defects results in a denser system, where the majority
of the particles is in a configuration with six neighbours.

Our simulations reveal, that the defects often move out of
the system by forming waves (see Fig. 5). At the same time the
volume gained by the optimized configuration will be filled by
particles from above. This lattice defect propagation can locally
create much stronger agitation than the external input. The
resulting lattice formed by the particles can contain small
defects. Ordering is not perfect, as can be seen in the last
snapshot of Fig. 5.

The other important observation is that the agitation leads
to a strong change in the statistical weight of the local 6

neighbour configurations defined in Fig. 2. The evolution of
the probability distribution of the 13 configurations is shown
for 200 shaking periods in Fig. 6 for experiments and simula-
tions. The occurrence of configurations 4 and 5 increases by
about 15% in both cases, though not always monotonically. In
contrast, the portion of all other configurations decreases. The
most favoured configurations are 4 and 5 with a tendency for
the latter to win at long-term. This corresponds to the fact that
the biggest drift takes place from configuration 7 to 5. In terms
of packing fraction configuration 1, 12 and 13 are the least
preferential, they are practically absent in both experiments
and simulations (see Fig. 6).

Fig. 4(b) shows that the outer part contains almost exclu-
sively configurations 4 and 5 while in the central region other
non-optimal ones are also seen. It is also apparent especially
in the lower part that most of the stripes are horizontal.
We measured and indeed found that 60% of configuration 5
is horizontal.

The system is characterized by a triangular lattice structure
(with some lattice defects) where one principle direction is
horizontal. The force network of the system has naturally the
major forces in one of the diagonal directions where the

Fig. 5 An example of domain boundaries propagating through the system
in the DEM simulations. The first snapshot was taken after the 230th
shaking period, and the others in steps of 30 shakes. Blue particles have
less than 6 neighbors, the others have 6. Red particles touch the front,
green ones the rear wall.

Fig. 6 Temporal evolution of the probability distribution of the 13 differ-
ent configurations. Each column is assembled from 40 vertical bars
corresponding to the probability distribution in subsequent intervals of
5 periods of agitation (from left (blue) to right (red)). Top: An average over
three experiments of 40 sinusoidal shaking intervals at a maximum vertical
acceleration of 3.0 g. Bottom: Corresponding DEM simulation (random
initial preparation method, m = 0.05).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
N

ov
em

be
r 

20
17

. D
ow

nl
oa

de
d 

on
 9

/1
9/

20
24

 2
:1

5:
32

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/C7SM01900A


400 | Soft Matter, 2018, 14, 396--404 This journal is©The Royal Society of Chemistry 2018

magnitude of the forces is normalized by the hydrodynamic
pressure. Our simulations show that in the starting configura-
tions in average the horizontal component of the diagonal
forces is the same as the average horizontal force. This means that
there is no bias in the directions. After more than 450 shakings the
number of forces remains the same, but the horizontal forces
get almost half as small as in the initial configurations. This has
two important implications, first direction of gravitation is very
important for the late stage, second the resulting configurations
have much less frustration than in the initial one.

In order to gain a deeper insight into the mechanism
determining the configuration statistics, we calculated for each
configuration the mean local area (polygon formed by the
centres of mass of six neighbours, after a projection to the
x–z plane) and the probability of its occurrence in the experi-
ments (Fig. 7). There is a clear anticorrelation. The closest local
packing has the highest probability of occurrence.

4 Model

The above described observations suggest that the specific
configurations of 7 particles (Fig. 2) play an important role in
the dynamics of the system. The minimal distance between two
neighbouring particles is different if they are in or out of plane.
For such a system the position of the particles in the configura-
tions is not well defined. Due to the compaction effect of shaking,
the minimal area each configuration takes up is of interest.

We calculated analytically the minimal area of the hexagons
given by the centres of the six neighbours for all 13 configurations
presented in Fig. 2. These configurations contain 6 triangles. There
are two types of them: (i) equilateral with side length of unity and

(ii) isosceles with a longer (ll = 1) and two shorter sides (ls ¼
ffiffiffiffiffiffiffiffiffi
0:91
p

,
see Table 1). As we will see, some of the configurations can be
perfectly covered with such triangles, but most of them can not.
This estimation may serve as a theoretical minimum.

For the equilateral triangles, all three angles are 601. For the

isosceles, two angles are equal to arccos 0:5=
ffiffiffiffiffiffiffiffiffi
0:91
p� �

� 58:39
�
,

while the third one is equal to 2 arcsin 0:5=
ffiffiffiffiffiffiffiffiffi
0:91
p� �

� 63:22
�
.

If we sum up all the angles around the central particle, three
possibilities can occur: (i) if the sum is exactly 3601, then there
is no need to distort any of the triangles, and the minimal area
is found. The corresponding configurations are 4, 5, 9 and 13.
(ii) If the sum is less than 3601, then the minimal area is found
where all the 6 particles are closely packed around the central
one, and only one triangle is distorted. The area is minimized if
the selected triangle is the one, with the shortest edges con-
nected to the central particle. These configurations are 7, 8, 10,
11 and 12. (iii) If the sum of the angles is more than 3601, then
the optimum is always found where 5 particles are closely
packed around the central one, and the sixth one is pushed
out, therefore it does not touch the central one anymore. The
two neighbours of the 6th grain should be on the opposite side
compared to the central particle, and the sixth grain should be
on the same side as the central one, if possible. The configura-
tions 1, 2, 3 and 6 are falling into this case.

We verified the above reasoning by using a simple kinetic
Monte Carlo method using simulated annealing to calculate
the minimal projected area a configuration takes up. The
Monte Carlo method started from an equilateral configuration
with distance 1 between the particles. The elementary step was
the small random displacement of a particle in a random
direction. The move was accepted only if there was no overlap
between the particles, with the standard Metropolis algorithm:
accepting a move with probability 1 if the area decreases and
with probability exp(�DV/T) if the area increases. T was an
artificial temperature that decreased slowly during the
simulation.32 The simulation confirms the analytic calculation
as shown in Fig. 8.

Four configurations, 4, 5, 9, 13, do not have frustration in
the sense that all particles can be placed next to each other.
Moreover, they are space-filling: the complete lattice can be
covered by any of these configurations. Obviously, the minimal-
area configuration is composed of configurations 4 and 5. This
confirms why we see the increase of the occurrence of these two
configurations in the experiments and simulations.

Once we have access to the minimal area of the different
configurations, a Monte Carlo (MC) simulation of the whole
system can be carried out. Our conjecture is the following: as
the spheres fall down the energy is dissipated though inelastic
inter-particle collisions. As the system cools down the particles
are driven by gravity to lower their centre of mass, namely to
minimize the packing area. First this means a triangular lattice,
and then it may be further optimized by particles choosing
sides that optimize the area of local configurations.

In our model we will focus only on the second part of the
optimization and assume a perfect triangular lattice. We thus
perform a Monte Carlo simulation where the elementary step is
the swap of a randomly chosen particle from one side of the cell
to the other. The energy of the system is defined as the total
area occupied by the configurations. Since each single particle
is part of seven local configurations, the above elementary step
affects seven local configurations. The dynamics defined here
will be referred to as local packing fraction model. This model
has two parameters: the temperature T and the number of MC

Fig. 7 Comparison of the mean area each configuration occupies (in
square of particle diameter units) and its probability of occurrence. The
magenta set corresponds to the time after gravitational filling, the purple
one corresponds to the final state after 500 shakes. Calculation obtained
from the same experimental data as plotted in Fig. 6 top.
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time steps t. Note that one MC time step is equivalent to N
elementary steps, where N is the number of particles in the
system.

We note that the approximate local description used here is
fundamentally different from the antiferromagnetic model
introduced in ref. 16 for the same system, where only the effect
of local frustration was considered.

Starting from a triangular lattice where the y position of the
particles (touching front or rear plane) is completely random,
we performed several simulations with different temperature
and MC time step. For each parameter pairs we did an
ensemble average. These results are then fitted to the reference
experimental and numerical configurations using least square
fit of the occurrence probability of different configurations. The
best fit was searched using parameter scan combined with
gradient method.

The distributions of the configurations in the initial state of
the simulations are shown in Fig. 9 with the fitted distribution
from the model. The time t for the best fit in both cases is t = 1
MC, which indicates that during preparation once the particles
found their place in the lattice, they had enough kinetic energy
to change side only once, which we believe is reasonable.
Significantly smaller kinetic energy would not allow changing
side, while in case of much larger kinetic energy, the particle
would not sense the local configuration.

The temperature for the case of the larger friction coefficient is
around 1.5 times larger than for the system with half as large m.

Thus the case with larger m is closer to the random case (large
temperature means particles change side almost irrespective of
the configuration area) as it is expected, since it is more
difficult for a more frictional particle to change side thus the
starting configuration will be closer to the random one.

This model can describe the initial configurations reason-
ably well, but fails to deliver comparable results for the late
stage of the system, especially for the experiments. This is due
to the fact that configuration 5 gets an important dominance
even with respect to configuration 4, which cannot be achieved
by any model based solely on configuration areas.

If we look at the late stage of the experiments, it is obvious
that the majority (it was measured to be about 60%) of
configuration 5 appears horizontally. Gravity thus plays an
important role in selecting these configurations. This has the
consequence that vertical frustrations are more important than
horizontal ones. During the process of settling down, particles
will look for places which have minimal frustration with the
particles below them, but will not consider much the horizontal
neighbours, and top neighbours are still too agitated to have
strong influence on them.

This idea was put into the local packing fraction model by
introducing an artificial energy term Eb arising from three
particle vertical frustration. The Eb energy term is added
to the area, if the particle has the same position as the two
particles supporting it. This so called combined model can
describe all cases with three parameters (T, t, Eb) with reason-
able accuracy.

We fitted different snapshots of the experimental and
numerical data at different time. The result is plotted in
Fig. 10. The model captures well the evolution of the statistics
of the configurations, though sometimes certain configurations

Fig. 8 Area of the different configurations (in units of the square of the
sphere diameter). Red: minimal areas from simulated annealing with
dynamic Monte Carlo simulation. The black dashed horizontal lines indi-
cate areas corresponding to i large equilateral and 6 � i small isosceles
triangles with i = 0 lowest and i = 6 highest. Green: minimal areas
calculated analytically. Black diamonds: the corresponding ‘ideal’ areas.
Magenta, blue: mean values calculated from experimental data. The
magenta circles correspond to the state directly after gravitational filling,
the blue asterisks to the ordered state after a total number of 5000 shakes.
Configurations 1 and 13 did not appear in the experiments.

Fig. 9 Fit of the distribution of the configurations in the initial state with
the Monte Carlo simulation for different coefficients of friction.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
N

ov
em

be
r 

20
17

. D
ow

nl
oa

de
d 

on
 9

/1
9/

20
24

 2
:1

5:
32

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/C7SM01900A


402 | Soft Matter, 2018, 14, 396--404 This journal is©The Royal Society of Chemistry 2018

are overestimated (e.g. configuration 2 in Fig. 10(a)), or under-
estimated (e.g. configuration 8 in Fig. 10(b)).

Fig. 11 shows the fitted model time parameters of the
combined model versus the number of shakes for the experi-
ment and two simulations. We see that the curves increase
faster in the early stage but slow down later, especially in the
case of numerical simulations started from a triangular lattice,
where the system seems to be completely frozen after 33 shakes.
If instead of fitting ensemble averaged results, in fits to indivi-
dual tests the fitted MC time increases in steps, which can be

attributed to large movements of lattice defects that diffuse
slowly out of the system.

5 Discussion

Our results suggest that the shaking of the system is too weak
for optimizing the configurations and it remains trapped in a
metastable state. The lattice defects on the other hand intro-
duce much larger local perturbation and make the system
evolve. This also explains the fact that the outer part of the
experimental system in Fig. 4 is more ordered than the inner
part. Here, the wall serves as a source of defects due to the
small space left next to it, which makes the system evolve faster
in these areas. A nice example of this effect is shown in Fig. 12,
where the middle region hardly evolved, i.e. blue data values are
the same as those in the initial configuration (green data). In
the outer region, however, where initially more defects were
present due to the wall, the system could evolve and finally only
configurations 4 and 5 remained (see red data). Fig. 12 also
contains configuration distributions from the model fitted to
the experiments. The inner region was fitted with parameters
T = 0.04, Eb = 0.0001, t = 1, the outer region with T = 0.04,
Eb = 0.1, t = 18. We note that the fit parameters indicate that the
vertical frustration is not very important in the preparation
phase but gets comparable to the area differences when shaken
and the particles are close to or above defects.

The temperature of the fit with T = 0.03–0.06 is already very
small, but even this small temperature is achieved only by the
help of defects. If the defects disappear from the system, it gets
frozen at least for the timescale accessible by our simulations.
This is shown by the comparison of two simulations in Fig. 11,
where one was prepared by randomly dropping the particles in
the container, while the other one started with a perfect trian-
gular lattice. Clearly the evolution of the system with ordered
initial condition is much slower than that of the random one.

We have a further justification for the importance of the
defects and the local dynamics. To this end we measured the
bulk density of our samples in time (Fig. 13). We have found
that there is a fast compaction at the very beginning when the

Fig. 10 Fit of the distribution of the configurations after shaking by the
combined model: (a) ensemble averaged experiment, (b) DEM simulation
(using the random displacement method). The different lines show states
after 10 shakes.

Fig. 11 Fit of the time parameter of the model for experiments and
simulations.

Fig. 12 Different parts of the system are more or less affected by the
agitation (framed with red and blue in Fig. 4, respectively). Configuration
5 is dominant in those parts which are strongly affected. Fits of the model
(defined in Section 4) are also presented.
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equilateral triangles are converted to isosceles ones. The pack-
ing fraction changes only marginally after this initial state
strengthening our previous argument about local dynamics of
the defects.

We have also tested our system with higher agitation in
simulations in an attempt to increase the driving temperature.
Unfortunately, this destroyed the triangular structure of the
system. This suggests that different energy input method is
needed if we want to study the frustrated dynamics of the local
configurations.

We found that our system was almost solely driven by
defects and otherwise the particles remained mainly jammed.
Therefore it would be of importance to move towards a limit
where more energy can be pumped into the system without
destroying the triangular structure. We propose two ideas:
(i) close the system from above. This solution has the advantage
that it can be realized both in experiments and simulations and
the energy input can be increased without breakup of the
triangular order, moreover it would allow us to define a global
volume fraction and compare the results to other dynamical
compaction models.33 (ii) Introduce local agitation in the
simulation. This would be a colloid limit of our setup. This
may also allow us to properly characterize the jamming transi-
tion in this system, and test whether a Gardner transition17,18,34

in this small dimensional system is present or not.

6 Summary

We have studied a granular system consisting of uniform
spheres in 2 + e dimensions, where the particles are enclosed
in a container barely wider than the particles. The ground state
of such a system is a triangular lattice with parallel stripes of
particles touching alternately the front and the rear plane.

We have shown that agitation changes the structure of the
sample and drives it closer to the optimal configuration. Local
structural changes require high activation energy, thus the
system can remain trapped in a domainwise optimized struc-
ture, where the incompatibilities between these domains
remain unsolved for long agitation periods.

The system is driven by the area change of local configura-
tions in a two particle radius space and by the antiferro-
magnetic vertical alignment. Using these ingredients we could
fit the numerical and experimental results using simple Monte
Carlo models. We have also shown that defects in the triangular
lattice play an important role in the dynamics of the system, as
they act as an activation source and help the development of an
optimized configuration.

The system thus behaves neither as a 2D nor as a 3D system.
The well defined global optimal configuration is also the local
optimal configuration, but due to orientational frustration this
optimal state is difficult to reach. Moreover this slow process
cannot be sped up since the input energy is limited by the level
which would destroy the triangular lattice.
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20 E. C. Oğuz, M. Marechal, F. Ramiro-Manzano, I. Rodriguez,
R. Messina, F. J. Meseguer and H. Löwen, Phys. Rev. Lett.,
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