Issue 18, 2018

Cardanol-based polymer latex by radical aqueous miniemulsion polymerization

Abstract

The facile one-pot, two-step synthesis of a new bio-sourced monomer derived from cardanol and its radical aqueous miniemulsion polymerization are presented in this work. As an abundant and renewable resource that does not compete with the food supply, cardanol is a compound of great interest for the replacement of petroleum-based materials due to its unique structure and properties. The new cardanol methacrylate (CM) was synthesized through hydroxyethylation of the phenolic hydroxyl group followed by methacrylation. The kinetics of the radical homopolymerization of CM and its copolymerization with methyl methacrylate (MMA) were investigated in toluene at 70 °C. The aqueous miniemulsion homo- and copolymerizations of CM and MMA were carried out at 20 wt% solids content, at 70 °C using 2,2′-azobis(2,4-dimethylvaleronitrile) as a radical initiator, sodium dodecyl sulfate as a surfactant, and hexadecane as a hydrophobe. The latexes were colloidally stable with monomodal particle size distributions and mean particle diameters ranging from 100 to 245 nm. The physical and chemical properties of the resulting polymer films were studied by thermogravimetric analyses and rheology.

Graphical abstract: Cardanol-based polymer latex by radical aqueous miniemulsion polymerization

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2018
Accepted
03 Apr 2018
First published
04 Apr 2018

Polym. Chem., 2018,9, 2468-2477

Cardanol-based polymer latex by radical aqueous miniemulsion polymerization

W. S. J. Li, C. Negrell, V. Ladmiral, J. Lai-Kee-Him, P. Bron, P. Lacroix-Desmazes, C. Joly-Duhamel and S. Caillol, Polym. Chem., 2018, 9, 2468 DOI: 10.1039/C8PY00167G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements