Issue 36, 2018

Plasmonic vesicles with tailored collective properties

Abstract

Plasmonic nanoparticle assemblies have been exhibiting unique collective properties absent in their individual counterparts. However, it is an important challenge to manipulate those properties due to the difficulty in controlling the arrangement and distance between plasmonic nanoparticles. Herein, we propose an alternative strategy for manipulating the distance between gold nanoparticles on the plasmonic vesicles to afford tunable collective properties by changing the temperature. To reach this goal, a thermally responsive vesicle is self-assembled from an azobenzene-terminated homopolymer, poly(2-(2-ethoxyethoxy)ethyl acrylate) (Azo-PEEA). Gold nanoparticles are then decorated on its membrane to afford plasmonic vesicles, which can be grouped and fused into larger plasmonic vesicles when heated. Consequently, the gold nanoparticles come closer, creating local hot spots in the gap between adjacent gold nanoparticles, leading to the red shift of local surface plasmon resonance (LSPR) peaks and better surface-enhanced Raman scattering (SERS). Besides, the structure and the collective optical properties of the plasmonic vesicles can be reserved under various conditions, e.g., different pH values, high salt concentration and relatively high temperature once they are heated up to 35 °C.

Graphical abstract: Plasmonic vesicles with tailored collective properties

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2018
Accepted
26 Aug 2018
First published
27 Aug 2018

Nanoscale, 2018,10, 17354-17361

Plasmonic vesicles with tailored collective properties

H. Sun and J. Du, Nanoscale, 2018, 10, 17354 DOI: 10.1039/C8NR04820G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements