Issue 37, 2018

Self-sensitization induced upconversion of Er3+ in core–shell nanoparticles

Abstract

A mechanistic study of upconversion from lanthanides is of great importance for the fundamental research of upconversion materials and their diverse frontier applications. However, the most efficient upconversion of lanthanides is still obtained in a commonly used sensitizer–activator coupled system. Here we report a mechanistic investigation on the upconversion of Er3+ through self-sensitization which is applicable for 808, 980 and 1530 nm excitations. It is found that the cooperative energy transfer upconversion followed by cross-relaxation occurring among Er3+ ions plays a critical role in producing and enhancing the red upconversion for the samples with high dopant concentrations (e.g., >20 mol%). The red upconversion color can be further purified and enhanced by mediating the upconversion dynamics through introducing the lanthanides of Ho3+, Tm3+ and Yb3+, which can effectively contribute to the population in the red emitting state. Moreover, the energy migration in the Er-sublattice was also found to be a possible origin for quenching upconversion, which was proved and effectively suppressed by designing a tri-layered nanostructure where the distribution of Er3+ is spatially controllable. Our results gain access into the insight of upconversion dynamics in self-sensitization induced upconversion which would help the search for other new kinds of upconversion materials.

Graphical abstract: Self-sensitization induced upconversion of Er3+ in core–shell nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2018
Accepted
24 Aug 2018
First published
31 Aug 2018

Nanoscale, 2018,10, 17949-17957

Self-sensitization induced upconversion of Er3+ in core–shell nanoparticles

L. Yan, B. Zhou, N. Song, X. Liu, J. Huang, T. Wang, L. Tao and Q. Zhang, Nanoscale, 2018, 10, 17949 DOI: 10.1039/C8NR04816A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements