Small molecule activation of nitriles coordinated to the [Re6Se8]2+ core: formation of oxazine, oxazoline and carboxamide complexes†
Abstract
Novel oxazine, oxazoline and carboxamide cluster complexes were prepared when different nucleophilic oxygen species reacted with nitriles coordinated to the Lewis acidic [Re6Se8]2+ cluster core. Reaction of ICH2CH2O− (generated in situ) with [Re6Se8(PEt3)5(NCR)]A2 (1A2 (R = Me) and 2A2 (R = Ph) where A = BF4−), leads to the formation of [Re6Se8(PEt3)5(2-methyloxazoline)]2+ (32+) and [Re6Se8(PEt3)5(2-phenyloxazoline)]2+ (42+). Similarly, reaction of BrCH2CH2CH2O− with the same nitrile complexes, 1A2 and 2A2 (where A = BF4− or SbF6−) leads to the corresponding oxazine complexes, [Re6Se8(PEt3)5(2-methyloxazine)]2+ (52+) and [Re6Se8(PEt3)5(2-phenyloxazine)]2+ (62+). In addition, reaction of 2(BF4)2 with KOH leads to the formation of the carboxamide complex, [Re6Se8(PEt3)5(phenylcarboxamide)](BF4) (7(BF4)). The neutral oxazine and oxazoline ligands can be removed using either heat or UV irradiation; UV irradiation was found to be more efficient at ligand removal as indicated by the shorter reaction times. The relative coordination strength of the neutral N-donor ligands was determined by these reaction times. X-ray structure determinations of 5(BF4)2 and 7(BF4) are also reported.