Issue 19, 2018

Azobenzene-based solar thermal fuels: design, properties, and applications

Abstract

Development of renewable energy technologies has been a significant area of research amongst scientists with the aim of attaining a sustainable world society. Solar thermal fuels that can capture, convert, store, and release solar energy in the form of heat through reversible photoisomerization of molecular photoswitches such as azobenzene derivatives are currently in the limelight of research. Herein, we provide a state-of-the-art account on the recent advancements in solar thermal fuels based on azobenzene photoswitches. We begin with an overview on the importance of azobenzene-based solar thermal fuels and their fundamentals. Then, we highlight the recent advances in diverse azobenzene materials for solar thermal fuels such as pure azobenzene derivatives, nanocarbon-templated azobenzene, and polymer-templated azobenzene. The basic design concepts of these advanced solar energy storage materials are discussed, and their promising applications are highlighted. We then introduce the recent endeavors in the molecular design of azobenzene derivatives toward efficient solar thermal fuels, and conclude with new perspectives on the future scope, opportunities and challenges. It is expected that continuous pioneering research involving scientists and engineers from diverse technological backgrounds could trigger the rapid advancement of this important interdisciplinary field, which embraces chemistry, physics, engineering, nanoscience, nanotechnology, materials science, polymer science, etc.

Graphical abstract: Azobenzene-based solar thermal fuels: design, properties, and applications

Article information

Article type
Review Article
Submitted
14 Jun 2018
First published
31 Aug 2018

Chem. Soc. Rev., 2018,47, 7339-7368

Azobenzene-based solar thermal fuels: design, properties, and applications

L. Dong, Y. Feng, L. Wang and W. Feng, Chem. Soc. Rev., 2018, 47, 7339 DOI: 10.1039/C8CS00470F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements