Introduction

Compared to the well-known isocyanates \([R-N==C=O]\), the chemistry of their heavier homologues, namely phosphaketenes \([R-P=\equiv C=O]\), has been largely unexplored. This is presumably the result of limited synthetic access and poor stability of their alkyl and aryl substituted derivatives.\(^1\) Indeed, pioneering work by Appel et al. showed that although the very bulky \(\text{[C}_{6}\text{H}_{3}(\text{Bu})_{2}]\)–P=\equiv C=O can be isolated at room temperature, \(\text{Bu}-\text{PCO}\) dimerizes above \(-60\) °C.\(^2\) However, the recent discovery of efficient preparation\(^3\) of phosphaethynolate salts (PCO–M)\(^4\) has allowed access to group 14–(Si, Sn, Ge, Pb)\(^5\) and transition metal–(Re, Au, Co, W)\(^6\) substituted phosphaketenes. In addition, the reaction of chlorodiazaphospholidines and -phospholines\(^7\) with \(\text{Na[PCO(dioxane)]}\) has allowed for the isolation of (phosphino)phosphaketenes \(1^{10}\) and \(1^{11}\), respectively (Scheme 1). Although the phosphaketene moiety of \(1^{1}\) reacts with the unsaturated backbone to give various rearrangement products,\(^11\) (phospholindino)-phosphaketene \(1^{\text{Dipp}}\) is thermally very stable (heating a toluene solution of \(1^{\text{Dipp}}\) overnight at 80 °C does not lead to decomposition or any rearrangement products), which allows for studying the reactivity of the \([\text{P}]–\text{PCO}\) moiety. We have already reported that elimination of CO occurred under irradiation of \(1^{\text{Ar+}}\), affording the corresponding room temperature stable phosphinidene \(2^{\text{Ar+}}\),\(^10\) while addition of phosphines to \(1^{\text{Ar+}}\) and \(1^{\text{Dipp}}\) leads to adducts \(3^{\text{Ar+}}\) and \(3^{\text{Dipp}}\), respectively. Herein we report that the \([\text{P}]–\text{PCO}\) scaffold can also react without loss of CO to give access to a variety of hitherto unknown phosphorus heterocycles.

Results and discussion

We started our investigation by studying the electrophilic activation of the \([\text{P}]–\text{PCO}\) moiety of \(1^{\text{Dipp}}\), with the aim of triggering the loss of carbon monoxide. We chose two different boron-derived Lewis acids. Upon addition of excess BH\(_3\), simple coordination to the endocyclic P center occurs giving 4, as
shown by the 31P NMR spectrum [-226 ppm (d), +131 ppm (br. d), $J_{PP} = 295$ Hz] and by a single crystal X-ray diffraction study (Scheme 2; Fig. 1, top). To understand the regioselectivity of the reaction, three BH$_3$ adduct isomers were optimized at the B3LYP-D3BJ/def2-TZVP level of theory (Fig. 2). The results show that the observed product 4 is more thermodynamically stable than 4b and 4c by $+13.2$ and $+24.7$ kcal mol$^{-1}$ (gas-phase electronic energies), respectively. Moreover, since the absolute coefficient of the HOMO of 1$^\text{Dipp}$ at the endocyclic P (0.42) is much larger than those at the phosphorus of PCO (0.32) and at O (0.11), 4 is also the kinetic product of the reaction.

Due to the steric environment around the endocyclic P atom, we wondered whether a larger borane would react at a different site (Scheme 2). Mixing 1$^{\text{Dipp}}$ and B(C$_6$F$_5$)$_3$ resulted in a new product as observed by 31P NMR spectroscopy with two sharp doublets at $\delta = +206$ and -11 ppm ($J_{PP} = 215$ Hz). An X-ray diffraction study revealed the formation of the unusual zwit-
eronic diphosphireniun 5 (Fig. 1, bottom).17 The PP bond distance (2.0804(14) Å) becomes significantly shorter than in 1$^{\text{Dipp}}$ (2.3782(8) Å)10 and is in the outer range for PP double bonds (1.985–2.050 Å).24 Concomitantly, the CO bond elongates from 1.170(3) Å in 1$^{\text{Dipp}}$ to 1.289(4) Å in 5. It is important to note that the computed nucleus independent chemical shift (NICS)19 values for the central three-membered ring are negative [NICS(0) = -17.33 and NICS(1) = -11.71 ppm], which suggests that the three-membered ring of 5 is a 2π-electron aromatic system. Mechanistically, the interaction of the borane with the oxygen atom induced a ring closure between the carbon ketene system. Alternatively, a reviewer suggested that the borane abstracts the PCO moiety to form a close ion contact-pair [P$^+$/PCO-BR$_3$]$^-$ followed by coordination of the phosphaalkyne to the electrophilic phosphorus center.20 However, DFT calculations indicate that the heterolytic cleavage of the P–P bond is energetically very costly. Moreover, a transition state in agreement with a concerted Lewis acid activation of 1 has been located using the small BF$_3$ Lewis acid as a model (Fig. S1†). Interestingly, 5 can be regarded as 1*, the cyclic isomer of 1 trapped by a Lewis acid. DFT calculations predict an energy barrier of 22.4 kcal mol$^{-1}$ for the endergonic interconversion of 1 into its cyclic isomer 1* ($\Delta E = 22.1$ kcal mol$^{-1}$) (Scheme 3). Note that the [P$^+$/OC] (1**) and [P=O]$-$/CP (1****) isomers are predicted to be 15.2 and 11.5 kcal mol$^{-1}$, respectively, higher in energy than 1.21
While the reaction of 1Dipp with Na[PCO(dioxane)]₂ is unselective, giving rise to several compounds, we observed that the same reaction with the sterically bulky (phosphino)phosphaketene 1Ar**, featuring 2,6-bis(di-4-tert-butylphenyl)methyl]-4-methylphenyl substituents,²² was highly selective. Independent of the excess Na[PCO(dioxane)]₂ used (or one equivalent), the 31P NMR spectrum showed the formation of a single product [+126.1 (d), +69.6 ppm (t), JPP = 302 Hz]. An X-ray diffraction study revealed that it was the sodium bridged dimer 6 containing the hitherto unknown δ,δ,δ-triphosphete core (Scheme 4, Fig. 3). Upon addition of 15-crown-5 to the phosphaketene with Na[PCO(dioxane)]₂**, we observed that the reaction involves an initial attack onto the carbon atom of the PCO moiety followed by cyclization with simultaneous loss of CO (ΔG° = 16.1 kcal mol⁻¹) (see Fig. S2 in ESI†). Aside from the formation of a novel type of phosphorus heterocycle, these results are interesting because they give important information on the synthesis of (phosphino)phosphaketenes 1. Indeed, to prepare the latter, it is crucial to use only one equivalent of Na[PCO(dioxane)]₂ and toluene as the solvent in which Na[PCO(dioxane)]₂ is only poorly soluble. Otherwise, instead of 1, heterocycles of type 6 are formed as the major product.

Serendipitously, we also prepared another novel type of phosphorus heterocycle formally resulting from a [1 + 3]-cycloaddition of "P = 31P 148.0 and 88.3 ppm, δ31P = 250.2 ppm demonstrating that the PPCO moiety remains, at least to a large extent, in the final product. Mechanistically, DFT calculations indicate that the reaction involves an initial attack onto the carbon atom of the PCO moiety followed by cyclization with simultaneous loss of CO (ΔG° = 16.1 kcal mol⁻¹) (see Fig. 2 in ESI†). Aside from the formation of a novel type of phosphorus heterocycle, these results are interesting because they give important information on the synthesis of (phosphino)phosphaketenes 1. Indeed, to prepare the latter, it is crucial to use only one equivalent of Na[PCO(dioxane)]₂ and toluene as the solvent in which Na[PCO(dioxane)]₂ is only poorly soluble. Otherwise, instead of 1, heterocycles of type 6 are formed as the major product.

Serendipitously, we also prepared another novel type of phosphorus heterocycle formally resulting from a [1 + 3]-cycloaddition. As isonitriles and carbon monoxide are isoelectronic, we were interested in the thermal substitution of the CO in phosphaketene 1Dipp by an isonitrile, using our recently reported ligand exchange strategy.¹² Surprisingly, the isonitrile does not add at the phosphorus center of PCO to displace CO, as previously observed with phosphines, but attacks at the carbon.²⁵ This is followed by a cyclization involving the endocyclic P and the resulting heterocycle 8 was isolated in 85% yield (δ31P 148.0 and 88.3 ppm, J = 370 Hz) (Scheme 5, Fig. 5).

The formal insertion of an isonitrile giving 8 can be rationalized by a mechanism similar to that postulated for the insertion of P leading to 6. According to DFT calculations, this process is exergonic by 6.1 kcal mol⁻¹ with an energy barrier of 23.3 kcal mol⁻¹ (Fig. 6, right). Note that direct
The difficulty in synthesizing (phosphino)phosphaketenes is illustrated by our attempt to prepare 11 derived from the electrophilic diazaphospholidine-4,5-dione (Scheme 6). A single product was formed upon mixing 9 with NaPCO, but the ^{31}P NMR spectrum revealed the presence of three different phosphorus nuclei ^{31}P NMR δ = +323 (dd, J = 466 Hz, 282 Hz); +48 (d, J = 282 Hz); +45 (d, J = 466 Hz) ppm. An X-ray diffraction study revealed the 1,3,4-oxadiphospholonide core 10 (Fig. 7), a type of heterocycle previously only observed by Grützmacher et al. in the reaction of NaPCO with tetraphenyl-cyclopentadienone.26 Interestingly, in the solid-state this compound features a linear polymeric network structure in which the sodium cation is bridging between the diketone moiety and the phosphorus heterocycle (Fig. 8).

Mechanistically, it seems reasonable to postulate the initially formed (phosphino)phosphaketene 11 spontaneously rearranges into the spirocyclic zwitterionic derivative 12 which resembles the borane adduct 5. Then, a second equivalent of NaPCO induces a ring opening giving 13, which undergoes a ring closure leading to the observed product 10.

Conclusions

This work has shown that (phosphino)phosphaketenes are powerful building blocks in heterocyclic chemistry. In contrast to our recent reported CO substitution approach,12 this work...
demonstrates the feasibility of nucleophiles to add to carbon on the phosphaketene moiety. The endocyclic C center can either activate the phosphaketene by forming highly reactive diporphirenum species or engage in ring closing reactions. Importantly the stability and chemical behaviour of these novel heterocycles is strongly dependent on the nature of the phosphino substituents.

Acknowledgements

Thanks are due to the NSF (CHE-1359809) for financial support. MMH is thankful to the Alexander von Humboldt foundation for a Feodor-Lynen scholarship and LL to the China Scholarship Council for a graduate fellowship. We are grateful to the Keck Foundation for funding the KeckII computer center. Dr Milan Gembicky and Dr Curtis Moore are greatly acknowledged for their help with X-ray diffraction.

Notes and references

24 The 13C NMR signal is broad as a result of the coupling with several different phosphorus nuclei (see ESI†).
