Correction: Preparation of Pt–Tl clusters showing new geometries. X-ray, NMR and luminescence studies

Úrsula Belío, Sara Fuertes and Antonio Martín*

Correction for Preparation of Pt–Tl clusters showing new geometries. X-ray, NMR and luminescence studies by Úrsula Belío et al., Dalton Trans., 2014, 43, 10828–10843.

The authors regret that figures and tables reproduced in this Dalton Transactions paper from their previous Inorganic Chemistry paper (ref. 99) did not contain credit lines in their captions. The updated captions are reproduced below.

Fig. 5 195Pt NMR spectra of compounds: $3 + \text{TIPF}_6$ exc. (a) and 1 (b) in CD2Cl2 at variable temperature. Reprinted with permission from Belío et al., Inorg. Chem., 2013, 52, 5627–5629. Copyright 2013 American Chemical Society.

Fig. 6 Comparison between the solid state (above) and solution (below) 195Pt NMR spectra of compounds 1 (blue) and 3 (red). Solid state 195Pt NMR spectra are registered at spinning speeds of 12 kHz. Reprinted with permission from Belío et al., Inorg. Chem., 2013, 52, 5627–5629. Copyright 2013 American Chemical Society.

Fig. S2 Solid state 195Pt NMR spectra of compound 1 registered at spinning speeds of 8 and 12 kHz. Reprinted with permission from Belío et al., Inorg. Chem., 2013, 52, 5627–5629. Copyright 2013 American Chemical Society.

Fig. S3 Solid state 195Pt NMR spectra of compound 3 registered at spinning speeds of 5, 8 and 12 kHz. Reprinted with permission from Belío et al., Inorg. Chem., 2013, 52, 5627–5629. Copyright 2013 American Chemical Society.

Table 1 Selected bond lengths (Å) and angles (°) for [Pt(CNC)(tht)]·0.5Me2CO (1·0.5Me2CO). Reprinted with permission from Belío et al., Inorg. Chem., 2013, 52, 5627–5629. Copyright 2013 American Chemical Society.

Table 2 Selected bond lengths (Å) and angles (°) for $\{\text{Pt(CNC)(tht)}\}_3\text{Tl}-(\text{PF}_6)_3$ (3). Reprinted with permission from Belío et al., Inorg. Chem., 2013, 52, 5627–5629. Copyright 2013 American Chemical Society.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Departamento de Química Inorgánica, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain.
E-mail: tello@unizar.es