A butterfly motion of formic acid and cyclobutanone in the 1:1 hydrogen bonded molecular cluster†

Luca Evangelisti, Lorenzo Spada, Weixing Li, Susana Blanco, Juan Carlos López, Alberto Lesarri,* Jens-Uwe Grabowc and Walther Caminati*

Upon supersonic expansion, formic acid and cyclobutanone (CBU) form a molecular cluster in which the two constituent molecules, linked by OH⋯O and CH⋯O hydrogen bonds, undergo a rapid interconversion between two equivalent forms. The tunneling motion takes place through the rupture and reformation of the C–H⋯O hydrogen bond between the carbonyl oxygen of HCOOH and one of the two hydrogen atoms of the methylenic group adjacent to the cyclobutanone keto group. From the microwave spectra, tunneling energy splittings (∆E_{01}) have been determined for the parent (1122.756(3) MHz), DCOOH⋯CBU (1084.538(1) MHz) and HCOOD⋯CBU (1180.282(4) MHz) isotopic species. From these splittings, the potential barrier to interconversion has been calculated to be B_2 = 39.7(5) cm^{-1}. The tunneling pathway is an asymmetric butterfly-like motion between the two moieties of the adduct, with a barrier at a configuration in which the ring plane of cyclobutanone is coplanar with formic acid.

Introduction

A number of complexes of carboxylic acids have been investigated by high resolution spectroscopy, providing information on the non-bonding interactions which link the constituent molecules, on the Ubbelohde effect related to the OH → OD isotopic substitution, on occasionally occurring conformational equilibria, and – most noticeably – on the internal dynamics of large amplitude motions.

With respect to internal dynamics, useful information is obtained when splittings of the rotational transitions, due to tunneling motions connecting equivalent minima, are observed in high resolution (typically microwave) spectra. From these splittings it is generally possible to determine the potential energy barrier connecting equivalent minima. This kind of splitting has been measured for internal motions such as: (i) double proton transfer in dimers of carboxylic acids with a suitable symmetry; (ii) internal rotation of a light symmetric double proton transfer in dimers of carboxylic acids with a suitable symmetry; (iii) inversion of an asymmetric splitting has been measured after the Fourier transform of 8k-data point

Received 10th October 2016, Accepted 15th November 2016
DOI: 10.1039/c6cp06941j
www.rsc.org/pccp
time domain free induction decays, recorded with 40 ns sampling intervals. The pulsed molecular beam was introduced along the axis of a Fabry–Pérot resonator. Consequently, each observed transition appeared as a Doppler doublet, and the rest frequency was determined as the arithmetic mean of the frequencies of the two Doppler components. The accuracy of frequency measurements is estimated to be better than 3 kHz.

(b) Valladolid. The rotational spectrum of the parent species was initially recorded with a broadband direct-digital chirp-pulse FTMW spectrometer covering the frequency range of 2–8 GHz, which follows Pate’s design. In this spectrometer a 5 μs chirp pulse created using an arbitrary waveform generator is amplified to 20 W and radiated perpendicular to the propagation of the jet expansion through a horn antenna. A molecular transient emission spanning 40 μs is then detected through a second horn, recorded with a digital oscilloscope and Fourier-transformed to the frequency domain. Sample preparation was similar to Bologna, with optimal conditions requiring a backing pressure of ca. 4 atm and neon as the carrier gas. The accuracy of the frequency measurements is better than 15 kHz.

Computational

Information on the most stable geometries, and conformational and dissociation energies of the dimer was predicted computationally using both density functional theory (B3LYP assisted with empirical dispersion terms using the Grimme D3 scheme) and ab initio methods (MP2). All calculations used Pople’s 6-311++G(d,p) basis set and were implemented in the Gaussian 09 program.

Results and discussion

To get an initial guess on the shapes and relative energies of the plausible isomers of FA-CBU, we performed geometry optimizations comparing the performance of the MP2 and B3LYP-D3 methods. The two subunits are expected to assume a nearly co-planar arrangement in the complex. MP2 predictions suggest two energetically close minima, with the CBU ring slightly distorted (up or down) from planarity, while the B3LYP-D3 calculation predicts a single minimum, with the CBU ring nearly planar in the complex. Actually, the ring puckering of isolated CBU has a double minimum potential energy function with a small barrier close to 5 cm\(^{-1}\) at the planar ring. In this case the ground vibrational state lies above the barrier, corresponding to an effective planar ring. It is well-known that MP2 tends to overestimate ring-puckering barriers while B3LYP underestimates them. In particular, MP2 suggests ring-puckering distortions when it is not the case (even for benzene). In addition, in previous investigations of complexes of CBU with water and trifluoromethane, MP2 suggested two conformers differing in the distortion of the CBU ring, but only one was found, with CBU effectively being planar. For this reason, we followed the prediction of the B3LYP-D3 calculation. The rotational constants, the values of the dipole moment components and the absolute energy for the most stable conformer are reported in Table 1.

| Table 1 | B3LYP-D3/6-311++G(d,p) shape, energy, spectroscopic constants and dipole moment components of the most stable form of FA - CBU |
|-----------------|-----------------|-----------------|-----------------|
| A/MHz | 4120 |
| B/MHz | 993 |
| C/MHz | 843 |
| \(\mu_a, \mu_b, \mu_c/D\) | 3.0, 0.7, 0.7 |
| Absolute energy/E\(_h\) | -421.150179 |

The rotational spectrum was first recorded for the parent species with a chirp-excitation microwave spectrometer in the frequency range of 2–8 GHz. Unfortunately, the spectrum was weak and considerably perturbed in that frequency region. We could reliably assign three transitions, 2\(_{02} \leftarrow 1\(_{01}, 3\(_{03} \leftarrow 2\(_{02}, \) and 4\(_{04} \leftarrow 3\(_{03}\) split into two component lines associated with the two inversion sublevels of the vibrational ground state. We then recorded the 6–18.5 GHz region using the pulse-excitation microwave spectrometer. We measured 31 \(\mu_a\) and 6 \(\mu_b\)-type transitions, displaying two intra-state tunneling components split up to 10 MHz. Finally, once good spectral predictions were iteratively obtained, 6 additional \(\mu_c\)-transitions were measured, with the two components evenly spaced by ca. 2245 MHz. The latter lines were identified as inter-state transitions, so the separation between the two components is about the double of the energy separation of the two inversion sublevels.

All rotational transitions have been satisfactorily fitted using the following two-fold coupled Hamiltonian:

\[
H = \begin{pmatrix}
H^R + H^{CD} & H^{int} \\
H^{int} & H^R + H^{CD} + \Delta E_{01}
\end{pmatrix}
\]

where \(H^R\) and \(H^R\) are the rotational terms for the 0 and 1 inversion sub-states, respectively, and \(H^{CD}\) represents the centrifugal distortion corrections (assuming the same value for the two inversion sub-states). The coupling term between the \(v = 0\) and \(v = 1\) states is expressed as:

\[
H^{int} = F_{bc} \times (P_b P_c + P_c P_b) + F_{ac} \times (P_a P_c + P_c P_a)
\]

where \(\Delta E_{01}\) is the energy difference between the two sub-states, and \(F_{bc}\) and \(F_{ac}\) are the Coriolis coupling parameters determined using the reduced axis system of Pickett, which are related to the off-diagonal elements of the inverse inertial tensor. The \((P_b P_a + P_a P_b)\) Coriolis term was not determinable from the fit, consistent with an inversion motion through an axis in the \(ac\) inertial plane. Pickett’s SPFIT program was used for the spectral analysis, using the \(I\)-representation of Watson’s \(S\) reduction. The resulting spectroscopic parameters are shown in the left column of Table 2.

Additionally, we could assign the spectra of the two monodeuterated species DCOOH - CBU and HCOOD - CBU, using ca. 99% enriched samples of DCOOH and HCOOD, respectively. The measured transition frequencies were fitted using the same procedure described for the parent species. The results of the fits are reported in the second and third columns of Table 2. No effects of the hyperfine quadrupole structure of the D atom...
and + brackets have been held fixed at the values of the parent species.

in parenthesis in units of the last digit.

– H and weak O hydrogen bonds.

are in line with the values for “conventional” O–H ⋯ O and weak C–H ⋯ O hydrogen bonds.

The three determined splittings ΔE_{01} are related to the height B_2 of the potential barrier connecting the two equivalent minima

depicted in Fig. 2, and to the specific pathway of the tunnelling motion. As expected, $\Delta E_{01}(\text{DCOOH} \cdots \text{CBO}) = 1084.538$ MHz is smaller than $\Delta E_{01}(\text{HCOOD} \cdots \text{CBO}) = 1122.756$ MHz, because the reduced mass of the motion is higher for DCOOH ⋯ CBO. However, unexpectedly, $\Delta E_{01}(\text{HCOOD} \cdots \text{CBO}) = 1180.282$ MHz is larger than the value of the parent species. This is probably related to the Ubbelohde effect, often observed in the complexes of carboxylic acids, and related to the change in the bond length of the O–H ⋯ O hydrogen bond upon H ⋯ D substitution.

For this reason, we relied only on the former two ΔE_{01} values to calculate the potential energy surface of the intermolecular motion. According to the theoretical calculations, B_2 is a function of the dihedral angle τ of the motion. The latter depends not only on τ with respect to the rigid moieties, but also on the dynamic structural relaxation which takes place during the complex’s large amplitude motion.

Meyer’s flexible model is especially suitable to determine potential energy surfaces from rotational and vibrational experimental data. As justified by the theoretical predictions, we describe the large amplitude motion along the dihedral

<table>
<thead>
<tr>
<th>HCOOH ⋯ CBO</th>
<th>DCOOH ⋯ CBO</th>
<th>HCOOD ⋯ CBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0/MHz</td>
<td>4151.91(2)</td>
<td>4139.41(7)</td>
</tr>
<tr>
<td>A_1/MHz</td>
<td>4151.22(2)</td>
<td>4118.70(7)</td>
</tr>
<tr>
<td>B_0/MHz</td>
<td>988.54(2)</td>
<td>961.55(2)</td>
</tr>
<tr>
<td>B_1/MHz</td>
<td>988.56(2)</td>
<td>961.67(2)</td>
</tr>
<tr>
<td>C_0/MHz</td>
<td>843.44(4)</td>
<td>823.40(5)</td>
</tr>
<tr>
<td>C_1/MHz</td>
<td>843.68(4)</td>
<td>823.62(5)</td>
</tr>
<tr>
<td>D_0/kHz</td>
<td>0.59(1)</td>
<td>0.56(2)</td>
</tr>
<tr>
<td>D_1/kHz</td>
<td>0.86(4)</td>
<td>0.84(5)</td>
</tr>
<tr>
<td>D_2/kHz</td>
<td>11(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>ΔE_{01}/MHz</td>
<td>1122.75(3)</td>
<td>1084.53(5)</td>
</tr>
<tr>
<td>δ_0/kHz</td>
<td>5.1</td>
<td>5.2</td>
</tr>
<tr>
<td>N^0</td>
<td>84</td>
<td>54</td>
</tr>
</tbody>
</table>

a Uncertainties in parentheses in units of the last digit. b Values in brackets have been held fixed at the values of the parent species. c Root-mean-square deviation of the fit. d Number of transitions in the fit.

Fig. 1 Principal inertial axes and atom numbering of the observed dimer of FA ⋯ CBO. The bond lengths of the two hydrogen bonds are also given.

Fig. 2 The tunneling motion in FA–CBO is due to the internal rotation around the C7O6–O2C1 (τ) dihedral angle, accompanied by structural relaxation of some other parameters.

(1 = 1) have been satisfactorily resolved. All the measured transition frequencies are given in the ESI† (Tables S1–S3).

Using the isotopic data, we report the Kraitchman substitution coordinates of the two hydrogen atoms of the FA unit (H5 and H4) in Table 3. The atom numbering and the principal inertial axes system of the complex are shown in Fig. 1. The derived atomic positions are in good agreement with the theoretical values.

The B3LYP-D3/6-311++G(d,p) structures of the two equivalent energy minima and the transition state on the potential energy surfaces from rotational and vibrational analysis of the dimer (see the text). It appears that $\Delta E_{01}(\text{FA} \cdots \text{CBO}) = 1122.756$ MHz, because the reduced mass of the motion is higher for DCOOH ⋯ CBO. However, unexpectedly, $\Delta E_{01}(\text{HCOOD} \cdots \text{CBO}) = 1180.282$ MHz is larger than the value of the parent species. This is probably related to the Ubbelohde effect, often observed in the complexes of carboxylic acids, and related to the change in the bond length of the O–H ⋯ O hydrogen bond upon H ⋯ D substitution.

For this reason, we relied only on the former two ΔE_{01} values to calculate the potential energy surface of the intermolecular motion. According to the theoretical calculations, B_2 is a function of the dihedral angle τ of the motion, which is the main parameter describing the relative motion of the two subunits. However, other structural parameters undergo considerable changes as a function of τ, influencing the reduced mass of the motion. The latter depends not only on τ with respect to the rigid moieties, but also on the dynamic structural relaxation which takes place during the complex’s large amplitude motion.

Meyer’s flexible model is especially suitable to determine potential energy surfaces from rotational and vibrational experimental data. As justified by the theoretical predictions, we describe the large amplitude motion along the dihedral

Table 2	Experimental spectroscopic constants of the observed isotopoligies of FA–CBO (Watson’s S-reduction, † representation)		
HCOOH ⋯ CBO	DCOOH ⋯ CBO	HCOOD ⋯ CBO	
A_0/MHz	4151.91(2)	4139.41(7)	4119.26(1)
A_1/MHz	4151.22(2)	4118.70(7)	4118.54(1)
B_0/MHz	988.54(2)	961.55(2)	983.63(2)
B_1/MHz	988.56(2)	961.67(2)	983.74(2)
C_0/MHz	843.44(4)	823.40(5)	838.57(5)
C_1/MHz	843.68(4)	823.62(5)	838.81(5)
D_0/kHz	0.59(1)	0.56(2)	0.58(1)
D_1/kHz	0.86(4)	0.84(5)	0.91(5)
D_2/kHz	11(1)	11(1)	11(1)
ΔE_{01}/MHz	1122.75(3)	1084.53(5)	1180.28(5)
δ_0/kHz	5.1	5.2	4.5
N^0	84	54	74

a Uncertainties in parentheses in units of the last digit. b Values in brackets have been held fixed at the values of the parent species. c Root-mean-square deviation of the fit. d Number of transitions in the fit.

Table 3	Substitution (r_s), equilibrium (r_e), B3LYP-D3/6-311++G(d,p) and effective (r_0) atomic coordinates of the two substituted hydrogen atoms in the principal axes system of the parent species of FA ⋯ CBO		
H4			
a/\AA	1.534(2)	1.4549	1.4991
b/\AA	0.968(3)	1.0365	0.9366
c/\AA	0.06(5)	0.1812	0.1806
H5			
a/\AA	3.7785(8)	3.7924	3.7720
b/\AA	0.579(6)	0.5712	0.5636
c/\AA	0.22(2)	0.0682	0.1247

a Calculated from the partial r_s structure (see the text). b Uncertainties in parentheses in units of the last digit.
angle τ with any structural relaxations in other co-ordinates of the dimer constrained into a one-dimensional function of τ. The double minimum potential can then be parameterized and described using the following function:

$$V(\tau) = B_2[1 - (\tau/\tau_0)^2]^2,$$

where the barrier B_2 at $\tau = 0$ and the equilibrium value of the inversion angle τ_0 (see Fig. 2) are the two parameters required. Being limited to two experimental splittings, we fixed τ_0 at its B3LYP-D3/6-311++G(d,p) estimate (29.7'). Guided by the theoretical structural differences between the potential energy minimum ($\tau = \tau_0$) and the top of the potential energy barrier ($\tau = 0$), we accounted for three structural parameters as a function of the dihedral angle τ as given in the following expressions (see Fig. 1 for labelling):

$$\angle C8C7−O6O2/\tau = 12.0(\tau/\tau_0)$$
$$\angle O6O2−C1O3/\tau = -2.2(\tau/\tau_0)$$
$$\angle C7O6O2/\tau = 126.7 - 3(\tau/\tau_0)^2$$

However, when using these structural constraints in Meyer’s one-dimensional flexible model, the ratio $\Delta E_{01}(HCOOH−C8−C7O6O2)/\Delta E_{01}(D5COOH−C8−C7O6O2)$ was very close to 1 rather than 1.035. To be able to reproduce the right ratio, we had to modify the relaxation parameter of the O6O2−C1O3 dihedral angle from $-2.2'$ to $+10'$. In this way the ratio and values of the two experimental splittings were satisfactorily reproduced at a barrier $B_2 \sim 39.7$ cm$^{-1}$. The results of the flexible model calculations are summarized in Table 4.

In the flexible model calculations, the τ coordinate has been probed in the $\pm 60'$ range and solved into 41 mesh points. Going back to the HCOOH−C8−C7O6O2 isobutanol, a barrier of about 1 cm$^{-1}$ lower is suitable to reproduce the ΔE_{01} splitting adhering to the parametrization used for the two former isomers. Using this model, the experimental ratios E_{ac}/E_{bc} are also reproduced using the Eckart axis system of Pickett and Strauss.

The positive value ($+10'$) of the relaxation parameter for O6O2−C1O3 suggests that the tunneling is due to an asymmetric butterfly motion of the two moieties with respect to each other, with the displacement with respect to the planarity of the O6 atom being much smaller that that of the C8 atom.

The dissociation energy of the complex, E_D, has been calculated at the MP2 and B3LYP-D3 levels to be 40.7 kJ mol$^{-1}$ and 47.9 kJ mol$^{-1}$, respectively. In order to obtain a comparable experimental estimate, it is necessary to approximate E_D from the centrifugal distortion parameter D_J within the so-called pseudo diatomic approximation combined with a Lennard-Jones type potential. This approximation is valid when the intermolecular stretching motion leading to the dimer dissociation is almost parallel to the a-axis of the complex. In the present case such a procedure leads to an E_D value of 9.7 kJ mol$^{-1}$, which is plausibly an underestimated value. While the theoretical values are not necessarily correct, the large discrepancy with the pseudodiatomic model results indicates that this model probably fails in this case, both because of the non-co-linearity of the dissociative stretching mode with the a-axis and the fact that D_J contains contributions from other vibrational motions.

Conclusion

The experimental observation of large tunneling splittings for three isotopologues of the adduct FA−CBU allowed describing the inversion pathway and the potential energy surface along the C7O6−O2C1 dihedral angle. This is one of the first times that the relative motion of two relatively large molecules constituting a heterodimer is characterized quantitatively from the tunnelling splitting measured in the complex’s rotational spectrum. The two subunits are linked through a conventional O−H···O hydrogen bond, which acts as a fulcrum for a butterfly-like motion that lets the O3 oxygen alternate between a C−H···O contact (or weak hydrogen bond) with the hydrogen atoms H15 or H16, corresponding to the two equivalent minima.

Acknowledgements

We thank the Italian MIUR (PRIN project 2010ERFKXL_001) and the University of Bologna (RFO) for financial support. We also thank funding from the Spanish MINECO-FEDER (CTQ2015-68148-C2-2-P) and the Junta de Castilla y León (UNVA-13-3E-2103).

References

