Highly flexible, erosion resistant and nitrogen doped hollow SiC fibrous mats for high temperature thermal insulators†
Abstract
Thermally stable and chemical resistant silicon carbide (SiC) fibrous mats have drawn much attention as a high-temperature thermal insulator in top end equipment and technology. Herein, novel free-standing, flexible, acid/alkali-resistant and nitrogen doped (N-doped) hollow SiC fibrous mats bearing ultralow thermal conductivity are reported. The materials were fabricated via a three-step process: the preparation of core–shell fibers from polymeric precursors by co-axial electrospinning, the thermal or electron beam irradiation curing process and pyrolysis process. The as-obtained continuous fibers manifested an oval-shape hollow structure and the thickness of the cavity wall was approximately 1.5 μm. The crystal pattern was obtained after pyrolysis over 1300 °C under a nitrogen atmosphere. The morphology, composition, curing and formation mechanisms of N-containing hollow SiC fibers with texture and porous surfaces were elaborately analysed. These facilely fabricated N-doped hollow SiC fibrous mats possess good flexibility, noninflammability, high thermal stability, erosion resistance, light weight (0.218 g cm−3) and low thermal conductivity at high temperature (0.039 W m−1 K−1), suggesting promising application as a high temperature thermal insulator.