Issue 38, 2017

Self-segregated nanostructure in room temperature ionic liquids

Abstract

The nanosegregated bulk structure, and its evolution with the cation's alkyl length n, are studied by X-ray scattering for an unprecedentedly broad homologous series of a model room-temperature ionic liquid, [CnMIM][NTf2] (n = 4–22). A tri-periodic local structure is found, with the lateral periodicities, dII and dIII independent of n, and a longitudinal one, dI, linearly increasing with n. The results are consistent with a local structure comprising alternating layers of polar headgroups and apolar, interdigitated, partly overlapping, cations’ alkyl tails, of an average macroscopic mass density close to that of liquid alkanes. A slope decrease in the linear dI(n) suggests a change from a lower to a higher rate of increase with n of chain overlap for n ≥ 12. The order decay lengths of the layering, and of the lateral chain packing, increase with n, as expected from the increasing van der Waals interaction's domination of the structure. The headgroups' lateral packing decay length decreases with n, due to increasing frustration between the longer lateral periodicity preferred by the headgroups, and the shorter lateral periodicity preferred by the chains. A comparison of the bulk and surface structures highlights the surface's ordering effect, which, however, does not induce here a surface phase different from the bulk, as it does in liquid crystals and liquid alkanes.

Graphical abstract: Self-segregated nanostructure in room temperature ionic liquids

Associated articles

Article information

Article type
Paper
Submitted
23 Jul 2017
Accepted
22 Aug 2017
First published
22 Aug 2017

Soft Matter, 2017,13, 6947-6955

Self-segregated nanostructure in room temperature ionic liquids

D. Pontoni, J. Haddad, M. Di Michiel and M. Deutsch, Soft Matter, 2017, 13, 6947 DOI: 10.1039/C7SM01464C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements