Issue 35, 2017

Investigation of moderately turbid suspensions by heterodyne near field scattering

Abstract

Light scattering has proven to be a very powerful technique to characterize soft matter systems. However, many samples are turbid and hence suffer from multiple scattering which can affect the signal considerably. Multiple scattering can be reduced by diluting the sample or changing the solvent, but often this alters the sample and hence is precluded. Here we study the dynamics of a model system. In particular, we investigate the effects of moderate multiple scattering on small-angle heterodyne near field scattering (HNFS). Varying the particle concentration and size we change the degree of multiple scattering, which is quantified by the transmission of light. In dependence of the degree of multiple scattering, we analyze the statistical properties of the HNFS signal, which is the difference between two intensity patterns separated by a delay time. The distribution of intensity differences follows a Gaussian distribution if single scattering dominates and a Laplace distribution in the presence of extreme multiple scattering. We also investigate the effects of multiple scattering on the measured intermediate scattering function and the hydrodynamic radius of the particles. Reliable data are obtained for sample transmissions down to about 0.7. This is confirmed by a comparison with results from a far field cross-correlation instrument that suppresses multiple scattering contributions. Therefore, HNFS represents a technically simple but powerful method to investigate samples that are moderately multiple scattering.

Graphical abstract: Investigation of moderately turbid suspensions by heterodyne near field scattering

Article information

Article type
Paper
Submitted
25 Apr 2017
Accepted
19 Jul 2017
First published
19 Jul 2017

Soft Matter, 2017,13, 5961-5969

Investigation of moderately turbid suspensions by heterodyne near field scattering

M. A. Escobedo-Sánchez, L. F. Rojas-Ochoa, M. Laurati and S. U. Egelhaaf, Soft Matter, 2017, 13, 5961 DOI: 10.1039/C7SM00816C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements