Issue 30, 2017

Microstructure based prediction of the deformation behavior of soft collagenous membranes

Abstract

The response of human amnion (HA) and bovine Glisson's capsule (GC) to uniaxial and biaxial tensile loading is analyzed on tissue (∼mm) and collagen fiber (∼μm) length scales. The mechanical behavior of the membranes is rationalized based on a discrete fiber network model that relates model parameters with microstructural features of the tissues. Parameters were first determined for GC based on the quantity and organization of collagen fibers in the tissue. Next, parameters for HA were defined by comparing the microstructures of the two membranes, which differ in fiber organization in that collagen forms μm-thick fiber bundles in GC while 50 nm-thin fibrils constitute the network in HA. The flexural behavior of these structures is phenomenologically represented in the model, indicating that shear forces are transmitted through fibrils within GC bundles, but to a much lesser extent than in a corresponding solid cross section. The model provides excellent predictions of the uniaxial and biaxial mechanical response, as well as of the progressive reorientation of fibers associated with uniaxial loading. The results are particularly relevant since model parameters were not obtained through a fitting procedure of the tissue's tension–stretch curve. Furthermore, simulations of representative in vivo deformation states indicated that a large part of the fibers are expected to be un-crimped under physiological loading conditions. Thus, the crimped shape of collagen fibers in the initial test configuration, and typically observed in histological analyses, might be a consequence of the contraction occurring when membranes are extracted from their environment in the body.

Graphical abstract: Microstructure based prediction of the deformation behavior of soft collagenous membranes

Article information

Article type
Paper
Submitted
16 Jan 2017
Accepted
05 May 2017
First published
11 May 2017

Soft Matter, 2017,13, 5107-5116

Microstructure based prediction of the deformation behavior of soft collagenous membranes

K. Bircher, A. E. Ehret and E. Mazza, Soft Matter, 2017, 13, 5107 DOI: 10.1039/C7SM00101K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements