Issue 31, 2017

Improved i-motif thermal stability by insertion of anthraquinone monomers

Abstract

In order to gain insight into how to improve thermal stability of i-motifs when used in the context of biomedical and nanotechnological applications, novel anthraquinone-modified i-motifs were synthesized by insertion of 1,8-, 1,4-, 1,5- and 2,6-disubstituted anthraquinone monomers into the TAA loops of a 22mer cytosine-rich human telomeric DNA sequence. The influence of the four anthraquinone linkers on the i-motif thermal stability was investigated at 295 nm and pH 5.5. Anthraquinone monomers modulate the i-motif stability in a position-depending manner and the modulation also depends on the substitution pattern of the anthraquinone. The insertion of anthraquinone was found to stabilize the i-motif structure when replacing any one of the positions of the central TAA loop and the thermal stabilities were typically higher than those previously found for i-motifs containing pyrene-modified uracilyl unlocked nucleic acid monomers or twisted intercalating nucleic acid. The 2,6-disubstituted anthraquinone linker replacing T10 enabled a significant increase of i-motif thermal melting by 8.2 °C. A substantial increase of 5.0 °C in i-motif thermal melting was recorded when both A6 and T16 were modified with a double replacement by the 2,6-isomer into the TAA loops in the outer regions. The largest destabilization is observed for the 1,5-disubstituted anthraquinone linker upon the replacement of A18. CD curves of anthraquinone-modified variants imply no structural changes in all cases under potassium buffer conditions compared with those of the native i-motif. Molecular modeling studies explained the increased thermal stabilities of anthraquinone-modified i-motifs.

Graphical abstract: Improved i-motif thermal stability by insertion of anthraquinone monomers

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2017
Accepted
20 Jul 2017
First published
20 Jul 2017

Org. Biomol. Chem., 2017,15, 6613-6621

Improved i-motif thermal stability by insertion of anthraquinone monomers

A. S. Gouda, M. S. Amine and E. B. Pedersen, Org. Biomol. Chem., 2017, 15, 6613 DOI: 10.1039/C7OB01393K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements