Issue 39, 2017

Higher order Fano graphene metamaterials for nanoscale optical sensing

Abstract

Plasmonic Fano metamaterials provide a unique platform for optical sensing applications due to their sharp spectral response and the ability to confine light to nanoscale regions that make them a strong prospect for refractive-index sensing. Higher order Fano resonance modes in noble metal plasmonic structures can further improve the sensitivity, but their applications are heavily limited by crosstalk between different modes due to the large damping rates and broadband spectral responses of the metal plasmon modes. Here, we create pure higher order Fano modes by designing asymmetric metamaterials comprised of a split-ring resonator and disk with a low-loss graphene plasmon. These higher order modes are highly sensitive to the nanoscale analyte (8 nm thick) both in refractive-index and in infrared vibrational fingerprint sensing, as demonstrated by the numerical calculation. The frequency sensitivity and figure-of-merit of the hexacontatetrapolar mode can reach 289 cm−1 per RIU and 29, respectively, and it can probe the weak infrared vibrational modes of the analyte with more than 400 times enhancement. The enhanced sensitivity and tunability of higher order Fano graphene metamaterials promise a high-performance nanoscale optical sensor.

Graphical abstract: Higher order Fano graphene metamaterials for nanoscale optical sensing

Supplementary files

Article information

Article type
Paper
Submitted
10 Aug 2017
Accepted
27 Aug 2017
First published
05 Sep 2017

Nanoscale, 2017,9, 14998-15004

Higher order Fano graphene metamaterials for nanoscale optical sensing

X. Guo, H. Hu, X. Zhu, X. Yang and Q. Dai, Nanoscale, 2017, 9, 14998 DOI: 10.1039/C7NR05919A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements