Issue 39, 2017

Healable and flexible transparent heaters

Abstract

Challenges associated with the mechanical fracture of electrical conductors have hindered the realization of truly flexible high performance wearable electronics. Here, transparent healable electrodes have been developed and examined to alleviate these problems. The composite electrode features a layer of an interconnecting AgNW network on a polyurethane film modified with Diels–Alder adducts (PU-DA). Surface modification using hydrophilic molecules improved adhesion of the AgNW network and resulted in mechanically robust flexible electrodes with a figure of merit sheet resistance of 13.3 Ω □−1 and 77% transmittance at 550 nm. Transparent and flexible healable heaters (TFHH) with good mechanical and thermal stability were fabricated using these electrodes for potential applications in thermochromics, electrically driven displays and defrosters. The PU-DA TFHHs exhibited high Joule heating temperatures of 102 °C with a low operation voltage (6 V), fast thermal response (150 s) and enhanced robustness to endure large repeated mechanical strain for over 500 bending cycles with a small variance in resistance (<10%). After deliberate damage by a knife cut, the electrodes were healed and recovered to their original conductivity via a simple heat treatment at 120 °C. Uniquely, the healing process can also be triggered by utilising electrical power.

Graphical abstract: Healable and flexible transparent heaters

Supplementary files

Article information

Article type
Paper
Submitted
04 Aug 2017
Accepted
27 Aug 2017
First published
05 Sep 2017

Nanoscale, 2017,9, 14990-14997

Healable and flexible transparent heaters

N. Tiwari, Ankit, M. Rajput, M. R. Kulkarni, R. A. John and N. Mathews, Nanoscale, 2017, 9, 14990 DOI: 10.1039/C7NR05748B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements