Rapid fabrication of bio-inspired nanostructure with hydrophobicity and antireflectivity on polystyrene surface replicating from cicada wings†
Abstract
The fine nanostructure on the cicada wing of Cryptotympana atrata fabricius, which exhibits hydrophobicity and antireflectivity, is carefully examined. A promising strategy is proposed for facilely and successively replicating the natural functional nanostructure of the cicada wing onto polystyrene (PS) surfaces. First, a nickel replica with tapered nanopores is fabricated by combining electroless plating and subsequent electroplating with the natural cicada wing as an original template. Then, using microinjection compression molding, with the nickel replica as a template, the tapered nanopores are transcribed onto the PS surface, resulting in orderly and densely arranged nanopillars with a mean diameter of about 156 nm and a mean pitch of about 180 nm. The natural cicada wing and fabricated nickel replica are reusable. Interestingly, the PS replica surface exhibits a water contact angle of 143° ± 2° and a reflectance of about 4% in the wavelength range of 400–1000 nm. These results mean that the bionic PS replica not only inherits the nanostructure of the natural wing, but also its hydrophobic and antireflective properties. The mechanisms for the hydrophobic and antireflective properties are revealed via composite wetting interface and effective medium layer on the replica surface, respectively. The proposed fast and efficient replication strategy can be an excellent candidate for mimicking bio-inspired functional micro/nanostructures without complicated procedures and expensive materials.