Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers†
Abstract
The efficient delivery of bioactive molecules via rationally designed nanoparticles is an important focus in regenerative medicine. The yolk shell nanocomposite particles described herein are composed of silk fibroin movable cores formed within voided calcium carbonate shells to load and control the release of labile cytokines. These particles are excellent carrier vehicles of potent molecules as they sustained the release of bioactive Bone Morphogenetic Protein 2 (BMP-2) for more than 28 days in vitro. Implantation into bone defects in rabbits corroborates the in vitro results and also reveals that upon contact with phosphate containing body fluids, implanted yolk shell particles agglomerate and transform into a filler that adapts to defect contour to further act as an absorbable hemostatic agent. Taken together, the fabrication of these yolk shell particle-based “bone fillers” could expand the horizon for the development of newer generations of advanced bioactive materials in tissue regeneration applications.