Coordination coupling enhanced two-photon absorption of a ZnS-based microhybrid for two-photon microscopy imaging in HepG2†
Abstract
Coordination coupling induced self-assembly of ZnS microparticles was performed with the help of a π-conjugated sulphur-terminal Zn(II) complex ZnS2L (L = N-hexyl-3-{2-[4-2,2′:6′,2′′-terpyridin-4′-yl-phenyl]ethenyl}-carbazole). The interactions between ZnS and ZnS2L components at the interface, which were analyzed by far-IR and XPS, resulted in a tunable single-photon excited fluorescence and an enhanced nonlinear optical response, including a two-photon absorption cross section and a two-photon excited fluorescence. Such an enhancement in nonlinear optical properties was triggered by the coordination coupling effect between terminal S atoms of ZnS2L and naked Zn2+ ions at the surface of ZnS particles. Thus, the novel hybrid system displayed a unique two-photon excited fluorescence to facilitate promising two-photon microscopy imaging of HepG2 cells upon NIR light illumination at 840 nm. The hybrid shows a stronger ability to enter the cells than free ZnS2L.