Issue 14, 2017

Porous silica-encapsulated and magnetically recoverable Rh NPs: a highly efficient, stable and green catalyst for catalytic transfer hydrogenation with “slow-release” of stoichiometric hydrazine in water

Abstract

A core–shell structured nanocatalyst (Fe3O4@SiO2-NH2-RhNPs@mSiO2) that is encapsulated with porous silica has been designed and prepared for catalyzing the transfer hydrogenation of nitro compounds into corresponding amines. Rh nanoparticles serve as the activity center, and the porous silica shell plays an important role in the “slow-release” of the hydrogen source hydrazine. This reaction can be carried out smoothly in the green solvent water, and the atom economy can be improved by decreasing the amount of hydrazine hydrate used to a stoichiometric 1.5 equivalent of the substrate. Significantly, high catalytic efficiency is obtained and the turnover frequency (TOF) can be up to 4373 h−1 in the reduction of p-nitrophenol (4-NP). A kinetics study shows that the order of reaction is ∼0.5 towards 4-NP, and the apparent active energy Ea is 58.18 kJ mol−1, which also gives evidence of the high catalytic efficiency. Additionally, the excellent stability of the catalyst has been verified after 15 cycles without any loss of catalytic activity, and it is easily recovered by a magnet after reaction due to the Fe3O4 nucleus.

Graphical abstract: Porous silica-encapsulated and magnetically recoverable Rh NPs: a highly efficient, stable and green catalyst for catalytic transfer hydrogenation with “slow-release” of stoichiometric hydrazine in water

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2017
Accepted
13 Jun 2017
First published
13 Jun 2017

Green Chem., 2017,19, 3400-3407

Porous silica-encapsulated and magnetically recoverable Rh NPs: a highly efficient, stable and green catalyst for catalytic transfer hydrogenation with “slow-release” of stoichiometric hydrazine in water

J. Zhou, Y. Li, H. Sun, Z. Tang, L. Qi, L. Liu, Y. Ai, S. Li, Z. Shao and Q. Liang, Green Chem., 2017, 19, 3400 DOI: 10.1039/C7GC00986K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements