Issue 43, 2017

Halogen substitutions leading to enhanced oxygen evolution and oxygen reduction reactions in metalloporphyrin frameworks

Abstract

The oxygen evolution and oxygen reduction reactions (OER and ORR, respectively) are important in the field of renewable and clean energy, particularly for hydrogen production and fuel cells. These applications have so far been limited because of the high price of the catalysts and the energy loss due to overpotentials. Hence, non-precious metal catalysts with high efficiency toward the OER/ORR are desirable. In this work, we employ density functional theory (DFT) calculations to study the OER/ORR on metalloporphyrin and halogenated metalloporphyrin frameworks. The free energies of the reaction intermediates, including OH, O and OOH, were measured on 14 metal sites (Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Ir, Pt and Au) of the metalloporphyrin frameworks. Adsorption free energy relations were found and used to establish the reaction trend. The group 9 metals, namely Co, Rh and Ir, turn out to be potential candidates for both the OER and ORR because they provide intermediate free energies close to those of an ideal catalyst. The substitution of halogen atoms at the beta-positions of the metalloporphyrins of group 9 metals modifies the adsorption free energies of the intermediates so that they become closer to the ideal values and in turn reduce the OER and ORR overpotentials. After functionalization, Co-Por-F provides the lowest ORR overpotential and reduces the OER overpotential, approaching the value for an expensive Ir catalyst. Analysis of the electronic structure shows that controlling the d-band splitting by chemical manipulation of the single active site catalyst can be the key to enhancing the efficiency of these reactions.

Graphical abstract: Halogen substitutions leading to enhanced oxygen evolution and oxygen reduction reactions in metalloporphyrin frameworks

Supplementary files

Article information

Article type
Paper
Submitted
11 Sep 2017
Accepted
16 Oct 2017
First published
16 Oct 2017

Phys. Chem. Chem. Phys., 2017,19, 29540-29548

Halogen substitutions leading to enhanced oxygen evolution and oxygen reduction reactions in metalloporphyrin frameworks

S. Wannakao, T. Maihom, K. Kongpatpanich, J. Limtrakul and V. Promarak, Phys. Chem. Chem. Phys., 2017, 19, 29540 DOI: 10.1039/C7CP06187K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements