Issue 31, 2017

Pyranose ring conformations in mono- and oligosaccharides: a combined MD and DFT approach

Abstract

Among the descriptors of the molecular structure of carbohydrates, the conformation of the pyranose ring is usually the most problematic one to tackle. We present the results of a systematic study oriented at determining the ring-inversion properties of all D-hexopyranoses in the form of monosaccharides, O1-methylated monosaccharides and homotrisaccharides. Contrary to the existing studies, based either on molecular mechanics force fields or on conformational search within ab initio potentials, we combine the structural information from molecular dynamics simulations performed within the GROMOS 56a6CARBO_R force field and use it in a subsequent geometry optimization procedure, performed at the DFT level of theory. This two-step procedure allows avoiding errors resulting from overestimating the contribution of the hydrogen bond-rich, low-energy structures that are not abundant in aqueous solutions. The calculated anomeric ratios and the populations of staggered conformers of the hydroxymethyl group are in satisfactory agreement with the experimental data. Regarding the ring-inversion properties, for the first time, we achieved good agreement of the ab initio-derived data for all hexopyranoses with the experimentally inferred Angyal scheme and with the NMR-inferred populations of ring conformers. The same computational methodology allows determination of the influence of functionalization (methylation or glycosylation) on the ring-inversion properties which includes the influence of the anomeric effect, enhanced upon O1-functionalization. In general, the correlation between ring-inversion properties of unfunctionalized monomers and those of O1-methylated, O1-glycosylated, O4-glycosylated and O1,O4-diglycosylated monomers is qualitatively (but not quantitatively) compatible with that predicted by the classical force fields.

Graphical abstract: Pyranose ring conformations in mono- and oligosaccharides: a combined MD and DFT approach

Supplementary files

Article information

Article type
Paper
Submitted
03 May 2017
Accepted
10 Jul 2017
First published
10 Jul 2017

Phys. Chem. Chem. Phys., 2017,19, 20760-20772

Pyranose ring conformations in mono- and oligosaccharides: a combined MD and DFT approach

K. Gaweda and W. Plazinski, Phys. Chem. Chem. Phys., 2017, 19, 20760 DOI: 10.1039/C7CP02920A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements