Issue 20, 2017

On the decay of the triplet state of thionucleobases

Abstract

Singlet oxygen production upon photosensitization plays a critical role in drugs based on thionucleobases. While for immunosuppressants its yield must be near zero, for phototherapeutic drugs it should be near the unity. In this work, we apply high-level quantum chemical modelling to investigate the decay of the triplet state of thionucleobases, a main determinant of the singlet oxygen yield. Working on CASPT2 optimizations of two prototypical thiothymines (2-thiothymine and 6-aza-2-thiothymine), we showed that the T1 state is characterized by two ππ* minima and by the intersection of T1 with the singlet ground state. On the basis of this topography, we propose a two-step mechanistic model, which, depending on the energetic balance between the two minima, may have as a determining step either a slow transition between minima or a faster intersystem crossing to S0. Chemical kinetics modelling, as well as simulations of the transient absorption spectra, confirmed that the two-step model can explain the experimental results available for both molecules. Moreover, through additional investigations of 2-thiocytosine and 6-thioguanine, we show that such a T1 topography is a common theme for nucleobases. We also discuss how the triplet-state topography may be used to control the singlet oxygen yield, aiming at different medical applications.

Graphical abstract: On the decay of the triplet state of thionucleobases

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2017
Accepted
20 Apr 2017
First published
20 Apr 2017

Phys. Chem. Chem. Phys., 2017,19, 12674-12682

On the decay of the triplet state of thionucleobases

S. Bai and M. Barbatti, Phys. Chem. Chem. Phys., 2017, 19, 12674 DOI: 10.1039/C7CP02050C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements