Issue 22, 2017

Comprehensive theoretical study of all 1812 C60 isomers

Abstract

We investigate all 1812 isomers of the fullerene C60 consistently with high-accuracy quantum chemistry methods. The isomers are optimized at the PBE-D3/def2-TZVP level of theory and their relative energies are obtained at the affordable and accurate hybrid-DFT level PW6B95-D3ATM/def2-QZVP. For the first time reliable values for the relative energy distribution among the 1812 isomers (maximum value of 549.1 kcal mol−1, average value of 189.8 ± 46.8 kcal mol−1, 1267 isomers in an energy window of 150–250 kcal mol−1) are given. The quality of the DFT energies is verified by comparison with highly accurate DLPNO-CCSD(T)/CBS* results for ten selected C60 isomers, and the DFT results are further used to benchmark several semiempirical methods. Our findings yield methodological insight into future multi-level modelling of larger carbon nano-structures. We correlate the best relative energies of the isomers to a number of topological indices, electronic properties, and geometrical measures in order to rationalize the isomeric stability aside from the common isolated pentagon rule minimizing the number of pentagon fusions. The information from the best qualitative measures can be condensed to the statement, that a small pentagon signature P1, a large volume, and a more spherical cage lead to a relatively stable isomer. In addition, the best semiempirical method was applied to all 31 924 isomers of C80.

Graphical abstract: Comprehensive theoretical study of all 1812 C60 isomers

Supplementary files

Article information

Article type
Paper
Submitted
02 Feb 2017
Accepted
18 May 2017
First published
18 May 2017

Phys. Chem. Chem. Phys., 2017,19, 14296-14305

Comprehensive theoretical study of all 1812 C60 isomers

R. Sure, A. Hansen, P. Schwerdtfeger and S. Grimme, Phys. Chem. Chem. Phys., 2017, 19, 14296 DOI: 10.1039/C7CP00735C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements