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Materials space of solid-state electrolytes:
unraveling chemical composition–structure–ionic
conductivity relationships in garnet-type metal
oxides using cheminformatics virtual screening
approaches†

Natalia Kireeva *ab and Vladislav S. Pervovc

The organic electrolytes of most current commercial rechargeable Li-ion batteries (LiBs) are flammable,

toxic, and have limited electrochemical energy windows. All-solid-state battery technology promises

improved safety, cycling performance, electrochemical stability, and possibility of device miniaturization

and enables a number of breakthrough technologies towards the development of new high power and

energy density microbatteries for electronics with low processing cost, solid oxide fuel cells, electro-

chromic devices, etc. Currently, rational materials design is attracting significant attention, which has

resulted in a strong demand for methodologies that can accelerate the design of materials with tailored

properties; cheminformatics can be considered as an efficient tool in this respect. This study was

focused on several aspects: (i) identification of the parameters responsible for high Li-ion conductivity in

garnet structured oxides; (ii) development of quantitative models to elucidate composition–structure–Li

ionic conductivity relationships, taking into account the experimental details of sample preparation;

(iii) circumscription of the materials space of solid garnet-type electrolytes, which is attractive for virtual

screening. Several candidate compounds have been recommended for synthesis as potential solid state

electrolyte materials.

1. Introduction

Solid state inorganic electrolytes enable a number of break-
through technologies towards the development of new high
power and energy density microbatteries for electronics with low
processing cost,1 solid oxide fuel cells,2 electrochromic devices,1,3,4

and many others. The organic electrolytes of most current
commercial rechargeable Li-ion batteries (LiBs) are flammable,
toxic and have limited electrochemical energy windows.
All-solid-state battery technology promises improved safety, cycling
performance, electrochemical stability and possibility of device
miniaturization. Additionally, solid electrolytes would enhance
the energy density by reviving metallic Li anodes technology.

In recent decades, a large number of inorganic materials, including
LISICONs-like and NASICONs-like compounds, perovskites,
antiperovskites, garnets, argyrodites, Li nitrides, halides and
hydrides, and LIPONs, with both crystalline and amorphous
structures as well as their composite structures have been
investigated experimentally and theoretically as potential solid
electrolyte candidates.5–12

Rational materials design to accelerate materials development
processes is attracting much attention, initiated to some extent by
growing interest in alternative green energy storage and conver-
sion technologies,13–21 which has resulted in a strong demand for
methodologies that can ascertain materials candidates with
tailored properties; cheminformatics (or materials informatics)
can be used as an efficient tool in this respect.14–20,22–39

There are a number of requirements40 that materials must
satisfy to be used as solid electrolytes in all-solid-state batteries:
high total Li+-ion conductivity (sLi 4 10�4) with a transference
number close to unity (sLi/stotal E 1), a high electrochemical
stability window (B6 V) with elemental Li or Li alloy, negligible
electronic conductivity (se o 10�10), retention of the electrode/
electrolyte interface during cycling, environmental safety of
materials, negligible solid-state electrode–electrolyte interface
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charge transfer resistance, chemical stability over the operation
temperature range, etc.

The current study is aimed at identifying the parameters
responsible for high Li-ion conductivity in the garnet-structured
oxide family of solid electrolytes that are attractive candidates for
high power and energy all-solid state Li ion batteries41 due to a
number of benefits, including their high Li ion conductivities,
stability against Li anodes, and small grain boundary resistance.
This study considers the total Li-ion conductivity as the target
property, focusing on the development of quantitative models to
elucidate chemical composition–structure–ionic conductivity rela-
tionships and endeavoring to consider materials synthesis and
processing information (experimental method, effects of tempera-
ture, time and atmosphere of sintering, etc.). Other specified
requirements for electrolytes are expected to be satisfied by the
intrinsic properties of garnet type oxides.

The study was carried out by applying machine learning
approaches related to two different groups of methods. The Li ion
transport characteristics of the collected data were analyzed by
combining regression analysis, thus elucidating the composition–
structure–ionic conductivity relationships and surveying garnet-
related structures for promising compositions with data
visualization techniques, known in computer-aided molecular
design as chemography or cartography approaches; this provided
a bird’s eye view of the materials space of solid electrolytes, which
is attractive for virtual screening. Both groups of methods29,42–46

are based on the chemical similarity principle, which claims
similar property values for similar compounds; the latter methods
posit a correspondence between the positioning of the com-
pounds in the chemical space defined by the ensemble of selected
parameters (descriptors) that are identified to be responsible for
the target properties and the structural similarity.

Among the most promising garnet-type solid electrolytes are Al3+,
Ga3+ and Fe3+-stabilized Li7La3Zr2O12 (LLZO). These compounds are
the object of increasing attention due to their high Li ionic
conductivities and interesting phase structure behavior in response
to doping. It was recently shown that Ga3+- and Fe3+-stabilized LLZO
can crystallize in alternative cubic space group I%43d (No. 220) to the
cubic polymorph great while considered as the only (SG Ia%3d; No.
230). The reasons for the phase transition and formation of this SG
are related to the site preferences of Ga3+ and Fe3+ cations, which
may be related to size factors.47 Several studies have been published
on the local structure and site occupancy preferences of Al3+ and
Ga3+ substituents.48–52 Thus, another aim of this study is an attempt
to offer insight on the relative 24d and 96h site occupancy by
dopants using grid search and setting-up ionic radii values of
Al3+ and Ga3+ cations for each compound. The correspondence
of predicted by the model ionic conductivity values with known
experimental ones served as a criterion for establishing relative
24d and 96h site occupancy.

2. Methodology

Despite the substantial progress in materials informatics, only
a few published studies are closely related to the objects of

our research. In ref. 16, the authors apply density functional
theory computation and an artificial neural network for modeling
Li ion transport (migration energy) in tavorite-type structures
in order to optimize these well-known cathode material struc-
tures for application as solid-state electrolyte materials. Using
cathode and solid electrolyte related to the same structural type
would be beneficial in order to decrease possible interface
resistance. Structural information (lattice parameters, ion effec-
tive charges, intra- and interpolyhedron parameters) obtained
as a result of DFT computations have been used as descriptor
values. Candidate compositions have been proposed. In ref. 15
and 17, a combination of DFT with machine learning methods
(partial least squares or artificial neural networks) was used
for virtual screening of olivine-type materials for solid electro-
lyte applications (with Li ion hopping energy as a predicted
property). Similar with previous study of the same group,
they perform the screening of olivine-related compounds for
compositions with suppressed electronic contribution in con-
ductivity value. In ref. 14, first principles calculations were
combined with support vector regression for modeling Li ion
conductivity values in LISICON-type materials; diffusion coeffi-
cients, transition temperatures, formation free energies of solid
solutions and average volumes of disordered structures were
used as descriptor values.

The details of our study are organized as separate paragraphs
and are given below.

2.1. Data and descriptors

The main dataset encompasses information related to garnet-
type oxide structures exhibiting high total conductivities at
ambient temperature, desirable chemical and electrochemical
stabilities, small grain boundary resistances, and Li transference
numbers close to unity, which make them of substantial interest
for use as solid electrolytes in all-solid-state batteries. This
information includes the total Li-ion conductivities (sum of the
bulk and grain boundary contributions), corresponding activa-
tion energy values, unit cell parameters if available, experimental
details of synthesis, resulting product densities, types of pressure
(uniaxial or isostatic) if available, etc. of garnet-type structure
metal oxides with the general formula A3B2(XO4)3, whose A, B,
X – eight, six and four oxygen coordinated cation sites are known
to crystallize into crystal structures in two cubic space groups
(Ia%3d; No. 230 and I%43d) as well as one tetragonal space group
(I41/acd; No. 142).

The distribution of the initial dataset according to reported
experimental values of their total ionic conductivities as well as
the taxonomy of the data in use are given in Fig. 1. This data is
provided as ESI.†

At the dataset preparation stage, only compounds with total
ionic conductivity values evaluated at ambient temperatures
were included (data measured at high temperatures have been
omitted). Also we removed the compounds related to tetragonal
crystal structure if the information about this compound as
about the cubic polymorph has been represented in other
publications from the data. Another reason for data removal
is observed data variance. Even for compounds obtained using
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the same synthesis methodology, one can see that the evaluated
Li ion total conductivity values varied in a wide range up to
several orders of magnitude (see Fig. 2 and Table 1).

The decisions in this case were made ad hoc, i.e. considering
each situation individually (compounds under consideration
were removed in cases of discrepancy with a prominent number
of observations for the same compound obtained using the
same synthesis method). One more reason for exclusion was an
estimated relative density of the sample (o50%) that was
essentially different from most of the observations in the data.

In fact, the problem of data curation, which is well-known
in cheminformatics, bioinformatics and chemogenomics,53–55

acquires special importance here due to the necessity to analyze
the reasons for such discrepancies. It acquires a wider meaning
and combines aspects related to the critical assessment of
published experimental data56–59 with the problem of controll-
able design of materials with desired characteristics; this is
of practical importance, for example, in the design of hybrid
electrolyte/Li metal anode structures in which garnet-based
solid state electrolytes (SSE) have porous/dense bilayer structures
with porous sublayers as a host for infiltrated lithium metal
anodes60 (the possibility to rationally design products with
specified characteristics is highly desirable and requires a clear
understanding of the relationships between the synthesis
method/conditions and final product characteristics).

The attempt to explicitly analyze the impact of materials
synthesis information on the materials properties was the reason
for including descriptors to encode materials synthesis information
as well as for using several computational procedures reflected in
different corresponding data sets that were issued from the initial
data or coincide with it.

Thus, two different data preparation protocols have been
used: in accordance with the first one, in cases where several
compounds are present, only the first compound in the list was
stored irrespective of the synthesis method or other experimental
conditions (123 compounds). This was also performed for the
alternative computations, where only the compounds obtained by
conventional solid-state reactions have been included (106 com-
pounds). In parallel, we decided to average out the logstot values in
cases where several compounds were present.

Another difference has been specified for the development
of models involving space filling parameters (see below), where
only compounds with available information on their lattice
constants have been considered (the data set encompasses 98
compounds).

The whole dataset used in combination with descriptors
encoding materials synthesis information encompasses 168
compounds.

Several types of parameters related to different categories were
used as descriptors for the model development. Most of these

Fig. 1 The taxonomy of the collected data (a) with its distribution according to reported experimental values of total ionic conductivity (b).
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are geometry-based and stem from the interrelations of
constituent element radii with geometric principles of ion
packing as well as currently published studies where the most
well known specific chemistries and structural type parameters
responsible for Li ion conductivity were related to the geome-
trical point of view61 (Fig. 3).

Constitutional (compositional) descriptors describe the
composition of compounds per formula unit (pfu), taking into
account the corresponding structure type by means of the com-
pound fingerprint bit string. For each cation type (in the case of
garnet-related structures, tetrahedrally, octahedrally or dodeca-
hedrally coordinated), three positions in this string are allocated.
The first one is the position of the cation most commonly
accommodated in the given site; the remaining two are reserved
for substitution elements. The same scheme is used for other
descriptors.

Shannon ionic radii values take into account the coordi-
nation environment of the metal cation in the structure and,
for less trivial cases concerned with alternative coordination,
‘‘optimized’’ ionic radii values where metal cations can be found
in different coordinations (see details in the computational
procedures section).

Octahedral factors and their analogues for alternative coor-
dinations. It was assumed that using octahedral factors64,65 in
combination with the atomic scattering factor (see below)
enables consideration of the possibility of cation off-centering
accompanied by symmetry lowering. Alternative parameters
were used in this study for the tetrahedral and dodecahedral
coordinations.

Space filling parameter. Because most garnets exhibit cubic
crystal structures, the impact of the space filling parameter

was assumed to be important. This parameter has been
assessed as:

j ¼

4p
3

� � P
i

niRi
3

� �

Vcell
; (1)

Lattice volume/Li content pfu.
Descriptors encoding materials synthesis information. Repro-

ducibility of the cubic polymorph of garnet structures is hindered
due to Li volatilization and contamination of Al3+ from the alumina
crucible while sintering (even when the same compounds are
obtained by different groups, for example by using conventional
solid-state synthesis, the total conductivity values can vary greatly (see
Fig. 2 and Table 1)). Moreover, because a variety of synthesis
methods have been used (conventional solid-state reactions, sol–
gel, modified sol–gel combustion, Pechini, polymerized complex, co-
precipitation, microwave-assisted, etc.) with different experimental
conditions that highly impact the final microstructures and, conse-
quently, the Li-ion conductivity, it was anticipated that including the
synthesis information explicitly as descriptor values could refine the
model predictivity. Unfortunately, this idea cannot be mothered on
authors since this, to a great extent apparent, suggestion has
already been published.66–68 The given descriptor type has been
represented: (i) as a sintering study alone, encoded in a 5-bit
string containing values related to the experimental tempera-
tures, sintering temperatures and times (on the assumption of a
two-step process, corresponding values have been normalized
to the range of 0 to 1), (ii) as an eight-bit string encompassing
information on the experimental temperatures, heating and
sintering regimes (here, data where the number of heating
steps exceeds two were omitted; in cases where an interval of

Fig. 2 The impact of experimental technique on the electrochemical performance of solid electrolytes: reported total conductivity values (S cm�1) as a
function of processing method.
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temperatures is given, the maximal value was used). In the
latter case, only the solid state reactions were considered.

Atomic X-ray scattering factor is the only parameter in this
study that is directly concerned with atomic electron configuration
and radial electron density distribution. The corresponding values
for chemical elements have been taken from ref. 69.

2.2. Machine learning methods

Support vector machines (SVM)70 were used in this study for
regression model development. Support vector regression (SVR)

is a commonly used supervised machine learning method
which is related to methods of structural risk minimization71

(arranging the trade-off between model complexity and predictive
error), realizing this principle by constructing an optimal hyper-
plane in order to minimize a special introduced e-insensitive loss
function where an optimization problem is solved using the
methods of quadratic programming.

The logarithm of total ionic conductivity was taken as a target
predicted property. SVM models were obtained using LIBSVM
software72 with epsilon-SVR and radial basis function (RBF)

Table 1 Experimental details, lattice parameters, activation energies, processing and product characteristics and total conductivity values for LLNO,
LLTO and LBLTO as the most investigated compounds

Ref. Precursors Syn. conditions
Lattice
const

Additional
comments Ea (eV) s total (S cm�1)

Li5La3Nb2O12

79 Solid-state reaction Li2CO3, La2O3,
Nb2O3

Calcination 700 1C (12 h) - 900 1C
(12 h) sintering 1000 1C (12 h)

— Isostat. pressure
2.5 ton

0.6 7.49 � 10�6

80 Solid-state reaction LiNO3 (10%
excess), La2O3, Nb2O5

Heating 700 1C (6 h) sintering 900 1C
(24 h) - 1000 1C to 1100 1C (6 h)

12.718 Isostat. pressure
300 kN

0.6 5.08 � 10�6

81 Sol–gel, LiOH, LaAc3�1.5H2O, N2O5,
HOOC–COOH, EDTA (5 mol%)

Pre-calcination 700 1C (6 h), sintering
700 1C to 1000 1C (6 h)

12.805 Uniaxial pressure
5 MPa

— 1.00 � 10�5

81 Sol–gel, LiOH, LaAc3�1.5H2O, N2O5,
HOOC–COOH, EDTA (5 mol%)

Pre-calcination 900 1C (6 h), sintering
700 1C to 1000 1C (6 h)

12.805 Uniaxial pressure
5 MPa

— 8.20 � 10�6

82 Solid-state reaction La2O3, LiOH�H2O
(10% excess) and Nb2O5

Heating 700 1C (6 h) - annealing
900 1C (24 h)

12.762 Isostat. pressure 0.43 8.00 � 10�6

83 Solid-state reaction La(NO3)3�6H2O,
LiOH�H2O, Nb2O5

700 1C (24 h) - 800 1C (24 h) -
850 1C (12 h) - sintering 950 1C (24 h)

12.762 Isostat. pressure 0.43 8.00 � 10�6

84 Solid-state reaction Li2CO3, La2O3,
Nb2O5, Co(NO3)2�6H2O, NiCO3

700 1C (12 h); sintering 900 1C to
1000 1C (12 h)

12.814 Isostat. pressure 0.56 5.70 � 10�6

84 Solid-state reaction Li2CO3, La2O3,
Nb2O5, Co(NO3)2�6H2O, NiCO3

700 1C (12 h); 800 1C (12 h);
950 1C (24 h)

12.818 Isostat. pressure 0.55 2.30 � 10�5

84 Solid-state reaction Li2CO3, La2O3,
Nb2O5, Co(NO3)2�6H2O, NiCO3

700 1C (12 h); 800 1C (12 h); sintering
1000 1C (24 h)

12.8 Isostat. pressure 0.55 4.40 � 10�5

85 Solid-state reaction LiNO3, La2O3,
Nb2O3

700 1C (12 h) - 700 1C (12 h) -
sintering 950 1C (24 h)

— Isostat. pressure 0.51 2.54 � 10�7

85 Ion-exchange reaction — Isostat. pressure 0.35 3.63 � 10�6

Li5La3Ta2O12

86 Sol–gel synthesis, ethylene glycol,
acetic acid�2H2O, Ta(OCH2CH3)5,
(La(NO3)3�6H2O)

Solution heating 120 1C, dry gel heating
300 1C, calcination 700 1C to 900 1C (5 h)
sintering 900 1C (5 h)

— Relative dens.
70%; press. 300
MPa

0.57 1.54 � 10�6

87 Solid-state reaction, LiNO3, La(OH)3,
Ta2O5

Calcination 700 1C (12 h), sintering
1000 1C to 1200 1C (24 h)

— Relative dens.
70%

— 1.30 � 10�4

88 Solid-state reaction, LiOH�6H2O,
Ta2O5, La2O3

Heating 700 1C (12 h), 800 1C (24 h),
950 1C (24 h step 50 1C), sintering
850 1C (24 h)

12.823 Relative dens.
71%

0.62 5.40 � 10�7

83 Solid-state reaction La(NO3)3�6H2O,
LiOH�H2O, Nb2O5

700 1C (24 h) - 800 1C (24 h) -
850 1C (12 h) - sintering 950 1C (24 h)

12.766 0.56 3.40 � 10�6

89 Solid-state reaction LiOH�H2O, Ta2O5,
La2O3

Heating 900 1C (10 h) - 900 1C (10 h),
sintering 36 h

12.831 Relative dens.
94%, uniaxial
pressure 5 ton

— 3.40 � 10�5

Li6BaLa2Ta2O12

90 Solid-state reaction LiOH (10 weight
% excess), Ta2O5, La2O3, Ba(NO3)2

Heating 700 1C (6 h) - 900 1C (12 h) 12.997 Relative dens.
70%, isostat.
pressure

0.47 1.50 � 10�5

91 Solid-state reaction Li2CO3, La2O3,
Ta2O5, BaCO3

Calcination 700 1C (6 h), 1000 1C (12 h),
sintering 1000 1C (4 h)

13.001 Relative dens.
67%, pressure
0.2 GPa

0.44 1.30 � 10�5

92 Sol–gel reaction, Li2CO3, La2O3,
Ta(OC2H5)5, BaCO3

Calcination 650 1C to 850 1C (6 h),
sintering 900 1C (4 h)

12.995 Relative dens.
96%

0.4 1.69 � 10�5

93 Solid-state reaction LiNO3, La2O3,
Ta2O5, Ba(NO3)2

Heating 700 1C (12 h), sintering
950 1C (24 h)

12.98 Isostat. pressure 0.41 1.22 � 10�5

94 Solid-state reaction LiNO3, La2O3,
Ta2O5, Ba(NO3)2

Heating 700 1C (12 h), sintering
900 1C (24 h)

12.975 Isostat. pressure 0.42 1.51 � 10�4

95 Solid-state reaction LiOH�H2O,
La2O3, Ta2O5, Ba(NO3)2

Heating 700 1C (6 h), sintering
900 1C (24 h)

12.946 Isostat. pressure 0.4 4.00 � 10�5
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kernel functions. The predictive performance of each model
was optimized in a grid search by varying three parameters:
C = 2�5, 2�3. . .215, e = 0.0001, 0.001. . .10 (internal parameters of
the method) and g = 2�15, 2�13. . .23 (parameter of the RBF
kernel). The models with optimized parameters providing the
best SVM performance on the cross-validation tuning set (part
of the training) were validated on the corresponding test set.

The predictive performances of the developed regression
models were assessed using the ten-fold external cross-validation
(10-CV) procedure, where the entire dataset is divided into ten non-
overlapping pairs of training and test sets of compounds (only the
training set compounds are involved in model development,
followed by application of the obtained models to the test set
compounds in order to evaluate the predictive ability of the
models). The determination coefficient R2, root mean squared
error RMSE, and mean absolute error MAE were accepted in
this study as the statistical parameters assessing the ability of
the models to quantitatively reproduce the experimental data.
They are calculated and related as follows:

R2 = 1 �
P

(Ypred � Yexp)2/
P

(Yexp � hYiexp)2 (2)

RMSE = (
P

(Yexp � Ypred)2/n)1/2 (3)

MAE =
P

|Yexp � Ypred|/n (4)

where n is the number of data points and Yexp and Ypred are the
experimental and predicted values of the total Li ion conductivity,
respectively. The difference in the RMSE and MAE values can
provide additional information on the performance of the model
concerning the presence of ‘‘strong’’ outliers in the prediction.

In this study, t-Distributed Stochastic Triplet Embedding73

has been used as the chemography technique. We chose this
approach due to our interest in the concept that underlies this
probabilistic method, which is based on a system of judgments
that are close to human ones when performing a comparison of
objects based on the principle ‘‘everything is relative’’ using
similarity triplet supervision (A is more similar to B than C) in
the framework of the stochastic neighbor approach. Thus, the
sum of the log probabilities over all triplets of compounds in
the training data is maximized:

max
X

X
8ði;j;lÞ�t

log pijl ; (5)

The probabilities are defined focusing on the local similarities
as follows:

pijl ¼
1þ xi � xj

2

a

� ��aþ1
2

1þ xi � xj
2

a

� ��aþ1
2

þ 1þ xi � xl
2

a

� ��aþ1
2

; (6)

where the probability pijl corresponds to probability that triplet
(i,j,l) satisfies to the declared rule and a – number degrees of
freedom. The resulting 2D map establishes a correspondence
between the locations of the compounds in the chemical space
defined by the coordinates adjusted during the training with
similar compounds.

The choice of this technique finally appeared to be justifiable
because it resulted in better data visualization performance
compared to several alternative data visualization approaches;

Fig. 3 Parameters designated for specific chemistries and structural types of solid electrolytes responsible for Li-ion conductivity values (part of the
figure is reproduced with permission from Macmillan Publishers Ltd Nature Materials (Nat. Mater., 2015, 14, 1026–1031), copyright (2015)62 and the Royal
Society of Chemistry63).
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these results were omitted, as they were assumed to be excessive.
The number of considered triplets (N = 10 000) and the number of
principal components (n = 4) of Principal Component Analysis
(PCA)74 that are recommended for use in this realization were
optimized during the process of model development.

2.3. Heuristic elucidation of relative site preference of
Al3+ and Ga3+

Garnet-type structure metal oxides have the general formula
A3B2(XO4)3, where A, B, X – eight, six and four oxygen coordi-
nated cation sites are known to crystallize into crystal struc-
tures in two cubic space groups (Ia %3d; No. 230 and I%43d) as well
as one tetragonal space group (I41/acd; No. 142). The tetragonal
low-temperature phase exhibits low RT total conductivity values
and thus cannot be considered as a material for solid state
electrolytes. The cubic polymorphs can be stabilized at RT
by the introduction of supervalent dopants (to date, Al3+, Ga3+

and Fe3+), which results in the formation of Li vacancies in the
lattice to maintain general electroneutrality. The questions of
site preferences and local compound coordinations for these
cations remain of interest because they can be closely related to
questions such as phase transitions between two observable
cubic modifications in a given metal oxide type related to
symmetry lowering. The experimental information on the local
coordination and the site preferences is quite discordant. The
most recent MAS NMR study51 using very high magnetic fields
showed that Al3+ and Ga3+ have almost the same site preferences,
which indicates that other parameters are responsible for the
twofold efficiency of Ga3+ doping.

We decided to check if it is possible to offer insight on
the relative site occupancy by adjusting the related descriptor
parameters from the known experimental ionic conductivity
values and analyzing the corresponding correlations. This
effort appeared interesting due to the simplicity of the idea.
It was believed that the agreement between the theoretical and
observed experimental data could enable the use of this addi-
tional information for predicting the Li ion conductivities of
new ‘‘virtual’’ compounds.

The descriptors (constitutional descriptors, Shannon ionic
radii and octahedral factors) were changed in order to reflect
the site occupancy preferences of the considered metal cations
as well as the introduced threshold values, which can be related
to the relative occupancy of tetrahedral and octahedral sites.
A simple grid search was performed by adjusting the internal
parameters corresponding to the threshold values of the pfu
values of the doping cations (0.01, 0.05, 0.1, etc.) for the cation
sites (which were exceeded corresponding to changes in tetra-
hedral and octahedral occupancy) as well as the values corres-
ponding to information on the relative site preferences of each
doping substituent and their ionic radii values, e.g. if the
amount of substituent cation A (pfu) exceeds the given thres-
hold value, this cation begins to occupy the distorted octahedral
96h site according to the depiction of the descriptors (adjusting
this value), thus corresponding to the adjustment of the relative
site preference parameters (the tetrahedrally coordinated 24d site
was considered by default).

3. Results and discussion

This study addressed several aspects, such as the possibility of
using the models developed here for virtual screening of new
garnet-related electrolytes, using the experimental information
as characteristics heavily defining the final product properties,
heuristic elucidation of the relative site preferences of Al3+ and
Ga3+ metal cations, etc.

Reasonable levels of predictive ability of the models have
been achieved; however, some limitations remain. Using experi-
mental details implicitly as model parameters yields unanticipated
results in a given realization. Another serious limitation is the
desensitization of the model by choosing one ‘‘frozen’’ Li ionic
radius value corresponding to the tetrahedral coordination and
leaving aside the information considered in ref. 75. Additional
models taking into account different possible Li+ coordinations
and, particularly, workarounds to consider Li+/H+ exchange if
this occurs resulted in no improvement of the achieved pre-
dictive ability. Herewith, the reached predictivity provides a
means of asserting the obtained models as a valid method for
virtual screening of new garnet-type SSEs. Thus, the predictive
ability of the regression models is represented in Fig. 4 as a
function of the protocol of computations (details are presented
in the Methodology (Data and descriptors) paragraph). The given
values of R2 characterizing the general model performance and
the corresponding predictive error values (RMSE and MAE) are
averaged over the results of 100 individual models (shuffling
compounds followed by re-building of the models). As is shown,
the predictive errors appear to be adequate for the requirements
of models suitable for the virtual screening of new compounds.
Thus, for the first data set R2, the RMSE and MAE values are
0.778, 0.372 and 0.283, respectively. The results of the models in
predicting the external test set compounds are generally in line
with this assertion. Meanwhile, significant discrepancies in the
experimental and predicted log stot values were observed for

Fig. 4 Predictive performance of regression models as a function of
computational details: 1 – dataset without consideration of the synthesis
method and experimental conditions, formed by compounds after removal
of duplicates (see details in the corresponding paragraph); 2 – dataset
formed by compounds obtained via conventional solid-state reactions
without consideration of experimental conditions; 3 – entire dataset
(encoding reported materials synthesis and processing information as
descriptor values).
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some compounds. The impact of the descriptors on the pre-
dictive ability of the models was analyzed using the SVD-USE
program (developing multiple linear regression models); their
contributions to the complete descriptors pool were demon-
strated to be almost equal. Artificially reducing the number of
descriptors emphasized the compositional descriptors (notably,
tetrahedrally and dodecahedrally coordinated cations) and octa-
hedral factors and their analogues for alternative coordinations.
A general analysis and discussion of the obtained results is given
below, and the prediction errors are examined.

3.1. Experimental data analysis

An important point that should be discussed is the intrinsic
variance in the experimental data. Understanding the sources
of this discrepancy in the experimental results for the same
compounds obtained in different studies appears to be impor-
tant, as it is related to a number of miscellaneous problems
arising from the questions of synthesis route selection (the
impact of the method, as in ref. 76, where, for a given example,
two synthesis methods are used with controversial results for
the electrochemical characteristics for the same cathode material,
or the effect of the experimental conditions, as in ref. 77), to reach
the reaction-by-design concept,78 the problem of reproducibility
of research, the accessibility of published negative results, etc.
Preliminary endeavors to explain the sometimes significant
discrepancies in the experimental data have been undertaken:
the experimental details, lattice constant values and activation
energies for LLNO, LLTO and LBLTO, the most investigated
compounds, are represented in line with their total conductivity
values (Table 1). Unfortunately, the processing-property inter-
relation is not always evident. The encoding of experimental
information in parameters thus attempting to unravel compo-
sition–processing–structure–ionic conductivity relationships
for garnet-type oxides using machine learning techniques was
an inception (the results are represented in one of the para-
graphs below).

3.2. Predictive ability of models

Among the most promising garnet-type solid electrolytes are
Al3+, Ga3+ and Fe3+-stabilized Li7La3Zr2O12 (LLZO). These com-
pounds are objects of increasing attention due to their high Li
ionic conductivities and interesting phase structure behaviors in
response to doping. It was recently shown that Ga3+- and
Fe3+-stabilized LLZO can crystallize in alternative cubic space group
I%43d (No. 220) to the cubic polymorph great while considered as the
only (SG Ia%3d; No. 230). The reasons for the phase transition and
the formation of this SG are related to the site preferences of Ga3+

and Fe3+, which are possibly due to size factors.47

Here, we briefly summarize the obtained property prediction
results for Al3+, Ga3+ and Fe3+-stabilized Li7La3Zr2O12 (LLZO). The
total conductivity values for most of the Al3+ and Ga3+-stabilized
compounds were predicted sufficiently accurately. However,
the effects of Al3+ and Ga3+ co-doping remained unexplained
by models. Thus, for two of three Li6.4Al0.2�xGaxLa3Zr2O12

compounds,96 the differences between the experimental and
predicted log stot values exceeded 0.5.

As an alternative to Al3+, Ga3+ and Fe3+ doping, stabilized cubic
LLZO polymorph is a super-valent substitution with highly charged
ferroactive cations (Ta5+, Nb5+, W6+, Mo6+, V5+ etc.) on Zr4+ sites
which are assumed not to hinder the Li ion diffusion pathways
(unlike tetrahedral site doping) and, hence, can be considered as
more efficient. Here, one can attribute the difficulty of prediction
of the compounds to the simultaneous presence of Nb5+ and V5+

cations in the structure.97 The disagreement between the experi-
mental and predicted values was acceptable (B0.2 in logstot) for
Li5La3Nb2�xVxO12 (x = 0.05, 0.1) and steeply increased for
Li5La3Nb2�xVxO12 (x = 0.15, 0.2, 0.25). Formation of secondary
phases has been observed for Li5La3Nb2�xVxO12 (x = 0.2, 0.25).

The predictions for Li7La3Hf2O12 compounds98 were not
sufficiently accurate, possibly due to discrepancies in the experi-
mental total conductivity values published in ref. 98 and 99.

The relatively poor conductivity prediction for Li6.8La3Zr1.8-
Sb0.2O12 may be related to the ‘‘cliff’’ property that appeared in
the experimental conductivity values from ref. 100. This obser-
vation can be related with discrepancy in the relative density of
this sample as well as in the difference in the total conductivity
assessment where this compound was the only for which impe-
dance plot was resolved into bulk, grain boundary and electrode
resistance, for other compounds total conductivity value was
evaluated as the inverse of the resistivity.

Finally, the predicted conductivity for Li5La3Ta2O12 from
ref. 101 was very different from its corresponding experimental
value.

The total conductivities for Ba-substituted LLT compounds
(Li5+xBaLa2Ta2O11.5+0.5x)102 were systematically underestimated
by models that included the difference in the experimental tem-
peratures, the oxygen nonstoichiometry of these compounds or
their instability to moisture.103 In contrast, the total conductivities
of Gd3+-substituted LLN79 were overestimated by the models,
except those for LLN-Gd60 (impurity phases were observed for
this particular compound). The incorrect predictions for these
compounds as well as for supervalent (Ce4+)-substituted LLZO
Li6.6La2.6Ce0.4Zr2O12

104 remain unexplained.

3.3. Heuristic elucidation of the relative site preferences of
Al3+ and Ga3+ cations

Here, some ambiguous results are discussed. This ambiguity is
a result of both the simplified method offering insight on the
relative site occupancies and adjusting the parameters of the
related descriptors using known experimental ionic conductivity
values (the correspondence between the predicted and experi-
mental values was considered as a congruence criterion) followed
by analyzing the corresponding correlations with predictions, as
well as the character of the results obtained.

The greatest consistency with experimental total conductivity
values was obtained as a result of a grid search performed with
the following parameters:

(i) If the amount of substituent cation A (pfu) exceeds the
threshold value of 0.1 for Ga3+ and 0.01 for Al3+ (almost all the
compounds), the tetrahedrally coordinated 24d sites 0.1 and 0.2 are
occupied, respectively, assuming that 0.9 and 0.8 of Ga3+ and Al3+

are accommodated by the octahedrally coordinated 96h site.
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(ii) Increasing the threshold value for Al3+ to 0.1 blurred the
occupancies of Ga3+ and Al3+ to the ranges of 0.1 to 0.4 and
0.2 to 0.5, respectively.

(iii) Further increasing the threshold for Ga3+ resulted in
changes of the occupation of the tetrahedrally coordinated
24d sites to 0.7 and 0.5 for Ga3+ and Al3+, respectively.

The results presented here that were not confirmed to be in
agreement with experimental observation (although the pub-
lished experimental data on the local coordination and the site
preferences are quite discordant) should still be discussed, as
they led to improvement of the predictive performance of the
models. Thus, the R2, RMSE and MAE values for the optimized
model are as high as 0.81, 0.34, and 0.26, respectively. The pre-
dicted vs. experimental log stot values are represented in Fig. 5.

The evaluation of statistical relevance of the observed improve-
ment of the predictive ability of the models is not sufficiently
correct. First, a different descriptor set was used for model
development; second, it is hindered by the number of Al3+ and
Ga3+-stabilized LLZO compounds available. However, the
analysis of the property prediction revealed a significant
improvement in the predictive ability of the model. First, the
effects of Al3+ and Ga3+ co-doping, which remained unexplained
in previous calculations, appeared to be described precisely
here. Thus, finally, no outlier-by-prediction Al3+ and Ga3+-doped
compounds were observed. Second, the general predictive ability
of the models was increased.

3.4. Using experimental information as descriptors

A description of the descriptor types is given in the data and
descriptors paragraph. By analyzing the data, one can see that a
variety of synthesis methods have been used for sample pre-
paration (conventional solid-state reactions, sol–gel, modified
sol–gel combustion, Pechini, polymerized complex, co-precipitation,
microwave assisted, etc.) with different experimental conditions
that highly impact the final microstructure and, consequently, the
Li-ion conductivity. Additionally, even for compounds obtained
using the same experimental synthesis method, one can see that

the evaluated Li ion total conductivity value varied in a wide range
up to several orders of magnitude (see Table 1 and Fig. 2).
Therefore, the concept of using the synthesis information
explicitly as descriptors refining the predictivity of the model
was itself feasible. However, its implementation appeared to be
unsatisfying. The case where only the sintering step was encoded
resulted in models with moderate predictive performance (at least,
for regression models), as shown in Fig. 4. Similarly, distinguish-
ing the data issued from the solid-state reactions and encoding
most of the processing history (if possible in principle105) did not
improve the total conductivity predictions. Additionally, its
apparent shortcomings include: first, the non-optimal method
chosen to encode information as descriptor values; second, the
disparity between the number of compounds obtained using
conventional solid-state reactions and all other approaches en bloc;
and finally, the consideration of similar reported materials
synthesis and processing information for compounds with
different property values (Table 1).

3.5. Other computational protocols

Involving space filling parameter as descriptors’ type to models’
development provides no improvement of model predictive
ability that is in a combination with reduced number of com-
pounds in the data set (as a result of missing structural data in
a number of studies) made its application inexpedient. Fig. 6
represents the Li ion conductivity and activation energies as a
function of the normalized lattice volume parameter, demon-
strating a similar situation where using lattice volume value
as a descriptor parameter despite observed correlations also
appeared to be unfeasible.

‘‘Averaged property’’ computations were performed as a
shortcut for the data selection procedure in cases where it was
necessary to choose one compound among many. Ideally, it has to
be performed entirely by the expert opinion which is not always
possible due to the coincident description of the published
experimental data. Thus, this study can be considered as some
sort of the compromise between the undertaken efforts of such
data evaluation and final quite rustic implementation. The results
of the performed procedure demonstrate similar predictive per-
formance to the first type of model computation.

We additionally attempted to distinguish compounds that
can be potentially instable to moisture. Thus, the possible instability
of garnet structures to moisture has been related to accommodation
of the tetrahedral and octahedral sites by Li+. Recently, it was
shown that increasing Li content results in the re-distribution
of Li ions among tetrahedrally coordinated 24d sites and
octahedrally coordinated 96h sites, increasing accommodation
of the latter.75 It was also reported that compounds with high
Li content can be especially sensitive to moisture. Conjoining
the given observations, we considered this by means of corres-
ponding adjustment of the descriptor values. The obtained
results show no improvement in the predictive performance of
the models, which can be interpretable as superfluous informa-
tion (the described behavior is already reflected in a roundabout
way in the compositional descriptors, which provide one of the
greatest contributions to the models), as an infeasibility to

Fig. 5 The predicted vs. experimental log stot values for the optimized
‘‘best’’ model during heuristic elucidation of the relative site preferences of
Al3+ and Ga3+ cations.
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consider complex problems using the given approach, or,
finally, as further indication of the lack of impact of Li+/H+

exchange on the total conductivity values.

3.6. Prediction of the external test set

The external test set encompasses all Ga3+-substituted com-
pounds (with known experimental values of total ionic conduc-
tivity) detached from the initial data set (these compounds were
preliminarily excluded from the training data used for develop-
ment of the models), Fe3+-substituted compounds,47 and several
out-of-bag compounds not included in the initial data set77,106–109

as well as the suggested ‘‘virtual’’ garnet-type compounds sub-
stituted with Zn2+, Ni2+, Cu2+, Sc3+, Cr3+, and Rb+ cations. Here,
Ga3+-substituted compounds were detached from the initial data
in order to check if the developed models have predictive ability
for compounds containing ‘‘new’’ dopants different from those
in the training set.

The results of the external test set predictions are represented
in Table 2. It should be pointed out that for the suggested
‘‘virtual’’ compounds, high predicted total conductivity values
alone are not sufficient, as these compounds may exhibit also
electronic conductivity, which makes them infeasible for appli-
cation as materials for solid state electrolytes.

3.7. Visualization of the chemical space of solid-state
electrolytes

Visualization of the chemical space of garnet-type solid electro-
lytes was performed using t-stochastic triplet embedding
(t-STE) (Fig. 7). Each point in the obtained map is an individual
compound; the color corresponds to the log stot value. The
external test set compounds are represented by black circles.
One can see that almost all of these compounds are situated in
the area corresponding to high log stot values. The distribution
of the compounds is in agreement with the SVR conductivity
prediction. The reasonable separation of the areas of chemical
space in accordance with the log stot value of the compounds
confirms the appropriateness of the choice of descriptors for
elucidating composition–structure–property relationships because
t-STE is related to unsupervised techniques where the information

on the property value is not involved in the process of the model
development itself and is engaged only for final data visualization
of the already obtained model if needed. One can see that among
the proposed compounds, only Rb+-substituted LLZO is projected
to the areas of the low total conductivity space. All the other
‘‘virtual’’ compounds form a distinct cluster joined with the
Ga3+ and Al3+-stabilized LLZO compounds.

Fig. 8 corresponds to the model involving experimental
information as an additional descriptor pool and reflecting

Table 2 Validation of the predictive ability of the models for virtual screening:
experimental and predicted values of total conductivities (log stot) for the
‘‘virtual’’ and synthesized compounds of the external test set

Compound name
Experimental
logstot (S cm�1)

Predicted logstot
(S cm�1)

Li6.4Ga0.2La3Zr2O12 �3.40 �3.25
Li6.15La3Zr1.75Ta0.25Ga0.2O12 �3.39 �3.37
Li6.55La3Zr2Ga0.15O12 �2.89 �3.18
Li6.4La3Zr2Ga0.2O12 �3.05 �3.25
Li6.1La3Zr2Ga0.3O12 �4.15 �3.42
Li5.5La3Zr2Ga0.5O12 �4.00 �3.89
Li6.4Al0.15Ga0.05La3Zr2O12 �3.42 �3.71
Li6.4Al0.1Ga0.1La3Zr2O12 �3.20 �3.69
Li6.4Al0.05Ga0.15La3Zr2O12 �3.97 �3.66
Li6.4Ga0.2La3Zr2O12 �3.93 �3.25
Li6.25La3Zr2Ga0.25O12 �3.46 �3.33
Li6.7Fe0.1La3Zr2O12 �3.16
Li6.46Fe0.18La3Zr2O12 �3.25
Li6.52Fe0.16La3Zr2O12 �3.23
Li6.4Fe0.2La3Zr2O12 �3.28
Li6.25Fe0.25La3Zr2O12 �3.36
Li6.1Fe0.3La3Zr2O12 �3.45
Li6.7Cr0.1La3Zr2O12 �3.22
Li6.7Ni0.1La3Zr2O12 �3.10
Li6.7Cu0.1La3Zr2O12 �3.84
Li7.25La2.875Rb0.125Zr2O12 �3.23
Li7.5La2.75Rb0.25Zr2O12 �3.41
Li7.75La2.62Rb0.375Zr2O12 �3.62
Li6.7La3Zr1.9Zn0.1O12 �3.30
Li6.35La3Nb1.375Sc0.625O12 �3.86 �3.74
Li6.52Al0.08La3Zr1.75Ta0.25O12 �3.11 �3.26
Li6.5La3Sn1.5Ta0.5O12 �3.62 �3.78
Li6.65Ga0.15La3Zr1.9Sc0.1O12 �2.74 �2.90
Li6.9La3Zr1.9Bi0.1O12 �3.36
Li6.6La3Zr1.8Mo0.2O12 �3.29 �3.31

Fig. 6 Li ion conductivity and activation energy as a function of lattice volume.
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the analysis from the viewpoint of the impact of these para-
meters on the property space. First of all, one can observe the
significantly lowest discrepancy for the data visualization models
among the considered property spaces defined by the descriptors
in use compared with the regression models, where this difference
was substantial. Second, one can see the relatively reduced area
corresponding to high logstot values.

Two cases for three descriptor pools are considered: two
types of normalization where (i) parameters responsible for the
materials synthesis information were scaled to union variance in
order to avoid the dominant contribution of any or (ii) re-weighted
(by multiplying by 2) parameters for (a) virtual compounds that
have been generated as synthesized by conventional one-step
solid state reactions (sintering temperature 1100 1C; time 36 h;
represented as black mark points in the figure); (b) the same data
obtained via two-stage sintering processes (the sintering condi-
tions have been taken from published studies – sintering tem-
perature 900 1C/1100 1C; time 24/6 h; labeled by red guide-marks);
(c) finally, the descriptor pool corresponding to sol–gel synthesis
with experimental conditions conforming with published studies
(sintering temperature 1200 1C; time 36 h; compounds repre-
sented as blue circles), i.e. the same candidate compounds in
the map are distinguished by different color coding related to
the synthesis conditions. Results of the second normalization
scheme are given in Fig. 8 because they appeared to be more

meaningful (in the models using the descriptor scaling to union
variance scheme, the weight of the experimental information is
minimized).

To sum up, reasonable levels of predictive ability of the
models have been achieved. The predictive errors (RMSE and
MAE) are comparable with the variance in the total conductivities
for the same compounds extracted from different publications.
The observed limitations of the predictive ability of the models
can be concerned with different aspects. Obviously, one of the
most valuable stages is the selection of descriptors. Here, we have
used a simple and even naive approach that is based mostly on
‘‘geometrical’’ insights into the problem. However, the predictive
performance of the developed models argues that they were
sufficiently successful that it would be reasonable to extend
these efforts to answer a number of pivotal questions that were
not addressed here. Another serious limitation of the developed
models is related to the ionic radii of Li. Thus, the problem
considered in ref. 75 was ignored here and the models were
desensitized by choosing one frozen ionic radius value corres-
ponding to tetrahedral coordination. Moreover, using the informa-
tion in ref. 75 in test computations had no impact on the predictive
ability of the models.

Additionally, the collected data has not been used sufficiently.
Thus, information on the activation energy, pressure, use of
the hot pressure approach, formation of secondary phases,

Fig. 7 Visualization of the chemical space of garnet-type solid electrolytes (dataset 1; for more details on this, please see the Data and descriptors
paragraph) using t-stochastic triplet embedding. Each point is an individual compound where the color corresponds to the log stot value; external test set
compounds are represented by black circles.
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and precursors used as well as the relative densities of the
obtained samples have not been included in this study.

4. Conclusions

Several types of parameters related to different categories have
been used as descriptors to develop a model to identify the
descriptors that are responsible for high Li-ion conductivity in
garnet-structured oxides; most of the identified parameters
were geometry-based and stemmed from the interrelations of
constituent element radii with geometric principles of ion
packing.

The Li ion transport characteristics of garnet-structured
oxides were analyzed combining regression analysis by support
vector regression (SVR), thus unraveling the composition–
structure–ionic conductivity relationships and surveying garnet-
related structures for promising compositions with t-stochastic
triplet embedding (t-STE), which is related to the group of
approaches known in computer-aided molecular design as
chemography or cartography methods and which circumscribes
the materials space of solid electrolytes; this is attractive for
virtual screening. A reasonable level of predictive ability of the
models was achieved (the statistical parameters R2, RMSE and

MAE of the SVR model are as high as 0.778, 0.372 and 0.283,
respectively). The predictive errors (RMSE and MAE) are com-
parable with the variance in the total conductivities for the
same compounds extracted from different publications. The
observed limitations of the predictive ability of the models can
involve different aspects, such as the choice of descriptors or
the intrinsic variance in the experimental data. The models
obtained by t-STE demonstrate clear allocation of the areas of
chemical space in accordance with the log stot value of the
compounds; this confirms the appropriateness of the chosen
descriptors for elucidating composition–structure–property rela-
tionships and enables an intuitively understandable method of
structure optimization. Both models were used to evaluate the
logstot values for the candidate compounds recommended for
synthesis.

Heuristic elucidation of the relative site preferences of Al3+

and Ga3+ cations was attempted. The character of the obtained
results has been discussed. We attempted to distinguish com-
pounds that can be potentially instable to moisture. The possible
instability of garnet structures to moisture was related to tetrahedral
and octahedral site accommodation by Li+. Unfortunately, the
results obtained are not sufficient for any conclusions.

Several candidate compounds have been recommended for
synthesis as potential solid state electrolyte materials.

Fig. 8 Visualization of the chemical space of garnet-type solid electrolytes using t-stochastic triplet embedding including the experimental information
as an additional descriptor pool. Each point is an individual compound, where the filling color corresponds to the log stot value; the candidate
compounds of the external test set are distinguished by different color coding related to the synthesis conditions: (a) virtual compounds that have been
generated via synthesis by conventional one-step solid state reactions (sintering temperature 1100 1C; time 36 h; represented as black mark points in the
figure); (b) the same data obtained via two-stage sintering processes (the sintering conditions have been taken from published studies – sintering
temperature 900 1C/1100 1C; time 24/6 h; labeled by red guide marks); (c) finally, a descriptor pool corresponding to sol–gel synthesis with experimental
conditions conforming with published studies (sintering temperature 1200 1C; time 36 h; compounds represented as blue circles).
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