Issue 56, 2017

Surface-assisted Ullmann coupling

Abstract

Surface-assisted Ullmann coupling is the workhorse of on-surfaces synthesis. Among the various couplings that were successfully transferred from solution to solid surfaces, Ullmann coupling is arguably the most reliable, controllable, and widespread coupling reaction. The basic reaction scheme is straightforward: halogenated precursors are deposited onto solid surfaces, normally of coinage metals. In the adsorbed state the halogen substitutents are split off by virtue of the surface's reactivity, thereby generating acitvated species that subsequently recombine by forming C–C bonds. Ullmann coupling is well suited for reticular synthesis of novel organic nanostructures: ideally, the halogen substitution pattern of the precursor – which becomes the monomer upon dehalogenation – predetermines dimensionality and topology of the covalent nanostructures. Also in many relevant systems, side-reactions do not occur. However, in reality topological defects, competing C–H activation on more reactive surfaces, and reaction intermediates render this seemingly simple coupling reaction not only more complex, but also more interesting for fundamental research. This feature article aims to provide an account of the vast amount of already published work and tries to destill important findings and currents trends in surface-assisted Ullmann coupling.

Graphical abstract: Surface-assisted Ullmann coupling

Article information

Article type
Feature Article
Submitted
02 May 2017
Accepted
13 Jun 2017
First published
16 Jun 2017

Chem. Commun., 2017,53, 7872-7885

Surface-assisted Ullmann coupling

M. Lackinger, Chem. Commun., 2017, 53, 7872 DOI: 10.1039/C7CC03402D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements