Issue 26, 2017

Organometallic chemistry using partially fluorinated benzenes

Abstract

Fluorobenzenes, in particular fluorobenzene (FB) and 1,2-difluorobenzene (1,2-DiFB), are increasingly becoming recognised as versatile solvents for conducting organometallic chemistry and transition-metal-based catalysis. The presence of fluorine substituents reduces the ability to donate π-electron density from the arene and consequently fluorobenzenes generally bind weakly to metal centres, allowing them to be used as essentially non-coordinating solvents or as readily displaced ligands. In this context, examples of well-defined complexes of fluorobenzenes are discussed, including trends in binding strength with increasing fluorination and different substitution patterns. Compared to more highly fluorinated benzenes, FB and 1,2-DiFB typically demonstrate greater chemical inertness, however, C–H and C–F bond activation reactions can be induced using appropriately reactive transition metal complexes. Such reactions are surveyed, including catalytic examples, not only to provide perspective for the use of FB and 1,2-DiFB as innocent solvent media, but also to highlight opportunities for their exploitation in contemporary organic synthesis.

Graphical abstract: Organometallic chemistry using partially fluorinated benzenes

Article information

Article type
Feature Article
Submitted
01 Dec 2016
Accepted
23 Jan 2017
First published
17 Mar 2017

Chem. Commun., 2017,53, 3615-3633

Organometallic chemistry using partially fluorinated benzenes

S. D. Pike, M. R. Crimmin and A. B. Chaplin, Chem. Commun., 2017, 53, 3615 DOI: 10.1039/C6CC09575E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements