2D amorphous iron phosphate nanosheets with high rate capability and ultra-long cycle life for sodium ion batteries†
Abstract
In our previous work, we reported the formation and mechanism of mono/bi-layer phosphate-based materials and their high performance as cathode materials for Li-ion batteries. In this work, we report that 2D amorphous nanosheets can be used as cathode materials to achieve outstanding performance for sodium ion batteries (SIBs) e.g. a high initial discharge capacity of 168.9 mA h g−1 at 0.1C, ultra-long life (92.3% capacity retention over 1000 cycles), and high rate capability (77 mA h g−1 at 10C) for Na-ion storage, whose electrochemical performance is also much superior to the reported amorphous FePO4 or olivine NaFePO4 with advantages of short paths and larger implantation surface areas for fast Na-ion diffusion and large specific surfaces with more interfacial capacitance. Interestingly, NaFePO4 nano-crystals with about 10 nm sizes are self-nucleated from amorphous 2D nanosheets in the charge/discharge process, which was verified by transmission electron microscopy (TEM) and in situ electrochemical impedance spectroscopy (EIS).
 
                



 Please wait while we load your content...
                                            Please wait while we load your content...
                                        