Issue 69, 2016, Issue in Progress

High pressure studies of Ni3[(C2H5N5)6(H2O)6](NO3)6·1.5H2O by Raman scattering, IR absorption, and synchrotron X-ray diffraction

Abstract

Herein, we report the high-pressure studies of Ni3[(C2H5N5)6(H2O)6](NO3)6·1.5H2O (1) by in situ Raman scattering, infrared absorption, and synchrotron angle-dispersive X-ray diffraction techniques up to ∼22 GPa at room temperature. We assigned all the vibration modes of 1 at ambient conditions. Detailed spectroscopy analyses revealed a chemical transformation at ∼0.75 GPa and a phase transition at ∼4.7 GPa, which are related to the behaviors of energetic ligands and flexible structures. Upon compression, the distortion of the energetic ligand induced the disconnection of NH2 and the triazole ring at 0.75 GPa. Further analyses of the N–H vibration modes indicated the phase transition at 4.7 GPa accompanied with the rearrangement of hydrogen bonds. In addition, the lattice structure abnormally expanded above 8.6 GPa due to the deformation of nitrate ions and the extension of the triazole ring. This study helps to understand the properties and the behavior of energetic coordination complexes under high pressure.

Graphical abstract: High pressure studies of Ni3[(C2H5N5)6(H2O)6](NO3)6·1.5H2O by Raman scattering, IR absorption, and synchrotron X-ray diffraction

Article information

Article type
Paper
Submitted
08 Apr 2016
Accepted
20 Jun 2016
First published
22 Jun 2016

RSC Adv., 2016,6, 65031-65037

High pressure studies of Ni3[(C2H5N5)6(H2O)6](NO3)6·1.5H2O by Raman scattering, IR absorption, and synchrotron X-ray diffraction

J. Jiang, J. Zhang, P. Zhu, J. Li, X. Wang, D. Li, B. Liu, Q. Cui and H. Zhu, RSC Adv., 2016, 6, 65031 DOI: 10.1039/C6RA09030C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements