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Radical exchange reaction of multi-spin isoindoline
nitroxides followed by EPR spectroscopy-
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The synthesis of a rigid, isoindoline-functionalized tetraphenylmethane multi-spin system is described. The
isoindoline nitroxide groups are used in a nitroxide exchange reaction with a TEMPO containing

alkoxyamine. Using EPR spectroscopy it is possible to follow the exchange process and thereby find the
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optimal experimental conditions to have the maximum yield. The presented approach could be used to

study the nitroxide exchange process of various systems and to determine the kinetics of the exchange
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Introduction

The synthesis of rigid organic building blocks containing
multiple functional groups is of high interest to create molecular
tectons for the synthesis of crystalline or amorphous covalently
linked materials as well as for the assembly of non-covalently
bound supramolecular architectures." The functionalization of
these molecular tectons with nitroxide moieties lead to attractive
model systems for EPR distance measurements” and would allow
the assembly of the tectons via halogen bonding® or nitroxide
exchange reaction.* The nitroxide exchange reaction,® which
belongs to the class of dynamic covalent chemistry, has been
incorporated in dynamic polymers or macromolecules® and as
a tool to trigger the self-assembly of micro-crystals.” In addition,
the nitroxide exchange reaction has been utilized to function-
alize polymers, self-assembled monolayers® or surfaces.” More-
over, the incorporation of profluorescent nitroxides allows
following the kinetics of the nitroxide exchange reaction.*
However, in all the reported cases, only the product formation
could be followed, not the exchange process as such. Herein we
report the synthesis of a rigid tetrahedral organic tecton
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process. The presented molecular components can be used as tectons in the construction of covalently
linked organic networks or as model systems for EPR distance measurements.

containing multiple nitroxide moieties. Afterwards we per-
formed a nitroxide exchange reaction and demonstrate that
progress of the reaction can be followed by EPR spectroscopy.

Results and discussion

The synthesis of the rigid multi-spin molecule is based on
tetrakis(4-azidophenyl)methane (1) as a core, which is func-
tionalized with nitroxide moieties via fourfold copper-catalysed
azide alkyne click chemistry’® between the azide functions of
the core 1 and the alkyne moiety of an isoindoline nitroxide 2.
Scheme 1 shows the synthesis of tetraphenylmethane nitroxide
(TPM-NO) 3. The TPM-NO 3 can be further functionalized using
dynamic and reversible nitroxide exchange reaction. Nitroxide
exchange reactions are based on thermal C-O bond homolysis
of alkoxyamines, which leads to transient carbon-centred radi-
cals and persistent nitroxide radicals. Usually these carbon
centred radicals are quickly trapped by the nitroxide radicals
and reform the alkoxyamines. If homolysis of an alkoxyamine is
performed in presence of an additional nitroxide radical, also
this additional nitroxide can trap the carbon centred nitroxide,
and a mixture of the two possible nitroxides will be formed. The
ratio will depend on the relative thermodynamic stabilities of
the different alkoxyamines (see Fig. 1 for a schematic repre-
sentation of the bond homolysis and of the nitroxide exchange
reaction).™

If the EPR (electron paramagnetic resonance) spectra of the
two nitroxide moieties (depicted as red and green in Fig. 1)
differ, i.e. in the hyperfine coupling constant as in the present
case, the exchange process can be followed via EPR measure-
ments. In order to evaluate the possibility to follow the
exchange process between the isoindoline nitroxide of TPM-NO
3 and 2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO, 5), we
recorded the EPR spectra of the individual compounds and
mixtures thereof in toluene at room temperature.
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Scheme 1 Synthesis of TPM-NO 3 using fourfold copper-catalysed azide alkyne click chemistry.
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Fig. 1 (a) Homolysis of an alkoxyamine into a nitroxide radical (red)
and a carbon centred radical (black); (b) thermodynamic product
formation for homolysis of an alkoxyamine in presence of an additional
nitroxide radical (green).

Fig. 2 shows the continuous wave (CW) EPR spectra of TPM-
NO 3 (left) and TEMPO 5 (right) and mixtures of TPM-NO 3/
TEMPO 5 with molar ratios of 9/1, 1/1 and 1/9. As can be seen
from the EPR spectra in Fig. 2, the isoindoline nitroxide moiety of
TPM-NO 3 has a hyperfine coupling constant of about 14.1 Gauss.

The EPR spectra show the typical tumbling induced line profile.
The TEMPO nitroxide 5 instead has a hyperfine coupling constant
of about 15.5 Gauss. Due to the difference in the hyperfine
coupling constants of the isoindoline and TEMPO nitroxides, the
exchange reaction can be easily followed by means of EPR.

We performed the nitroxide exchange reaction of the multi-
spin system TPM-NO 3 with the TEMPO-alkoxyamine 4 shown
in Scheme 2. Firstly, we followed the exchange reaction between
TPM-NO 3 and TEMPO-alkoxyamine 4 using an equimolar ratio
(with respect to the nitroxide moieties). Compounds 3 and 4
were dissolved in toluene and mixed at room temperature. The
resulting solution was divided in several aliquots, inserted in
closed ampules and degassed via bubbling with argon. After-
wards the different aliquots were heated under argon at 80 °C
for either 15 min, 1 h, 2 h, 14 h, 48 h or 96 h. After cooling to
room temperature the continuous wave EPR spectra were
recorded. Fig. 3 (top) shows the CW EPR spectra for the different
points in time.

1% lli\HH// 1MMOM

Fig.2 Continuous wave (CW) EPR spectra of TPM-NO 3 (left) and TEMPO 5 (right) and mixtures of TPM-NO 3/TEMPO 5 with molar ratios 9/1, 1/1

and 1/9.
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Scheme 2 Nitroxide exchange reactions of TPM-NO 3 and TEMPO-alkoxyamine 4.

In the EPR spectra of Fig. 3 (top), one can clearly see the
progress of the exchange reaction over time, with a decrease in
relative intensity of the species with lower hyperfine coupling
constant (TPM-NO 3) and an increase of TEMPO 5, showing
a larger hyperfine coupling constant. From the fitting of the
spectra (for details see the ESIT), we could obtain the different
relative percentages of the two species and could plot the
exchange percentage as function of time (see Fig. 3, bottom). The
plot reveals that the exchange process is a fast initial reaction
(within the first two hours) followed by a deceleration. The
deceleration is most likely due to the decreasing concentration
of TEMPO-alkoxyamine 4 in combination with the competition
for radical trapping between an increasing concentration of
liberated TEMPO 5 and decreasing concentration of TPM-NO 3.

Even after 96 h, the exchange reaction does not seem to have
reached the thermodynamic limit, where both species adapt

This journal is © The Royal Society of Chemistry 2016

their final equilibrium concentrations. In order to find condi-
tions under which the equilibrium is reached faster and in
order to optimize the yield of TPM-NO-alkoxyamine 6, we
investigated the influence of both the reaction temperature and
the equivalents of TEMPO-alkoxyamine 4 on the exchange
process. Fig. 4 shows the comparison of the CW EPR spectra of
TPM-NO 3 and TEMPO-alkoxyamine 4 in mixtures of 1:1 (a),
1:2(b),and 1 : 5 (c) molar ratios (related to nitroxide moieties),
after heating at 100 °C for 1 h and 24 h.

The EPR spectra show that the exchange reaction is almost
quantitative after 24 h at 100 °C in the presence of 5 equivalents
of TEMPO-alkoxyamine 4 with 96% yield (and 77% yield after 1
h), whereas the 1/1 (20% yield after 1 h and 65% after 24 h) and
1/2 mixtures (39% yield after 1 h and 80% yield after 24 h) still
contain large amounts of isoindoline nitroxide moieties of
TPM-NO 3.

RSC Aadv., 2016, 6, 55715-55719 | 55717
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Fig. 3 Top: EPR spectra of TPM-NO 3/TEMPO-alkoxyamine 4 1/1
mixture in toluene without heating (0 °C) and after heating at 80 °C for
15 min, 1 h, 2 h, 14 h, 48 h and 96 h. Bottom: graph showing the
percentage of exchanged nitroxides versus time.

1h 24 h
1/1
1/2
1
1/5 _JH//_J\/‘ JMfJ\f
10 Gauss I 10 Gauss

Fig.4 CW EPR spectra of TPM-NO 3 and TEMPO-alkoxyamine 4 after
heating at 100 °C for 1 h and 24 h. Top: 1/1 molar ratio of TPM-NO 3/
TEMPO-alkoxyamine 4; middle: 1/2 molar ratio of TPM-NO 3/TEMPO-
alkoxyamine 4; bottom: 1/5 molar ratio of TPM-NO 3/TEMPO-
alkoxyamine 4.
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Table1l Calculated limit of exchange for the radical exchange process
of TPM-NO 3 and TEMPO-alkoxyamine 4 compared with the experi-
mental data after 24 h heating at 100 °C

Molar Calculated for Calculated for Calculated for Experimental
ratio AG = —10 AG = -5 AG=0 after 24 h at
of 3/4 k] mol™* kJ mol* kJ mol* T = 100 °C
1/1 66% 58% 50% 65%

1/2 97% 91% 82% 80%

1/5 100% 100% 100% 96%

To verify if the exchange reaction reaches equilibrium at
100 °C after 24 h, we determined the expected thermodynamic
limit of exchange for the investigated molar ratios. For this, we
first estimated the Gibbs free energy AG by performing
quantum chemical calculations. Employing density functional
theory methods as implemented in the TURBOMOLE program
package,'> we obtain values between —4 k] mol™" and +5 kJ
mol . Considering the error in the calculated AG, we evaluated
the limit of exchange for several values in the range of £15 KkJ
mol " (for details of the calculations see Section 5 in the ESIT).
The experimental results for 7 = 100 °C after 24 h and the
calculated results for selected values of AG are summarized in
Table 1. The calculated results for slightly negative values of AG
fit well to the experimentally observed data. The calculations
suggest that the exchange process is approaching its thermo-
dynamic limit of exchange after heating at 100 °C for 24 h and
that a nearly quantitative exchange can be reached if the
TEMPO-alkoxyamine 4 is present in excess.

Experimental

The EPR spectra in this work were recorded on a Bruker
ESP300E spectrometer. The compounds were dissolved in
toluene and deoxygenated by bubbling argon for several
minutes. After treatment of the samples as written in the text
the spectra were taken at 298 K.

The instrument settings were as follows: microwave power
2.00 mW, modulation amplitude 0.0452 mT, modulation
frequency 100 kHz, scan time 180 s. Further details as well as
the synthesis of the compounds are described in the ESI.{

Conclusions

Here we describe the successful synthesis of novel rigid iso-
indoline based multispin nitroxides via fourfold click reaction.
These nitroxides were further converted into alkoxyamines via
exchange reaction with a TEMPO-alkoxyamine and character-
ized using EPR spectroscopy. Our results demonstrate that EPR
spectroscopy is a versatile tool to follow the exchange process
and to determine several factors influencing the kinetics of the
exchange process and optimize the experimental conditions to
have the maximum yield. The presented approach could be
used to study the nitroxide exchange process of various systems
and the presented molecular components can be used as initi-
ators for nitroxide mediated polymerization (NMP)" or as

This journal is © The Royal Society of Chemistry 2016
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tectons in the construction of supramolecular and covalently
linked organic networks. Further investigations in this regards
are currently ongoing.
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