Volume 194, 2016

Strong-field-induced wave packet dynamics in carbon dioxide molecule

Abstract

Temporal evolution of electronic and nuclear wave packets created in strong-field excitation of the carbon dioxide molecule is studied employing momentum-resolved ion spectroscopy and channel-selective Fourier analysis. Combining the data obtained with two different pump-probe set-ups, we observed signatures of vibrational dynamics in both, ionic and neutral states of the molecule. We consider far-off-resonance two-photon Raman scattering to be the most likely mechanism of vibrational excitation in the electronic ground state of the neutral CO2. Using the measured phase relation between the time-dependent yields of different fragmentation channels, which is consistent with the proposed mechanism, we suggest an intuitive picture of the underlying vibrational dynamics. For ionic states, we found signatures of both, electronic and vibrational excitations, which involve the ground and the first excited electronic states, depending on the particular final state of the fragmentation. While our results for ionic states are consistent with the recent observations by Erattupuzha et al. [J. Chem. Phys.144, 024306 (2016)], the neutral state contribution was not observed there, which we attribute to a larger bandwidth of the 8 fs pulses we used for this experiment. In a complementary measurement employing longer, 35 fs pulses in a 30 ps delay range, we study the influence of rotational excitation on our observables, and demonstrate how the coherent electronic wave packet created in the ground electronic state of the ion completely decays within 10 ps due to the coupling to rotational motion.

Associated articles

Article information

Article type
Paper
Submitted
23 Jun 2016
Accepted
29 Jun 2016
First published
30 Jun 2016

Faraday Discuss., 2016,194, 463-478

Strong-field-induced wave packet dynamics in carbon dioxide molecule

A. Rudenko, V. Makhija, A. Vajdi, T. Ergler, M. Schürholz, R. K. Kushawaha, J. Ullrich, R. Moshammer and V. Kumarappan, Faraday Discuss., 2016, 194, 463 DOI: 10.1039/C6FD00152A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements