Volume 194, 2016

Novel photochemistry of molecular polaritons in optical cavities

Abstract

Violations of the Born-Oppenheimer approximation (BOA) and the consequent nonadiabatic dynamics have long been an object of intense study. Recently, such dynamics have been induced via strong coupling of the molecule to a high-amplitude (spatially confined) mode of the electromagnetic field in optical cavities. However, the effects of a cavity on a pre-existing avoided crossing or conical intersection are relatively unexplored. The dynamics of molecules dressed by cavity modes are usually calculated by invoking the rotating wave approximation (RWA), which greatly simplifies the calculation but breaks down when the cavity mode frequency is higher than the relevant material frequencies. We develop a protocol for computing curve crossing dynamics in an optical cavity by exploiting a recently-developed method of solving the quantum Rabi model without invoking the RWA. The method is demonstrated for sodium iodide.

Associated articles

Article information

Article type
Paper
Submitted
26 Apr 2016
Accepted
17 May 2016
First published
17 May 2016

Faraday Discuss., 2016,194, 259-282

Novel photochemistry of molecular polaritons in optical cavities

K. Bennett, M. Kowalewski and S. Mukamel, Faraday Discuss., 2016, 194, 259 DOI: 10.1039/C6FD00095A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements