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The
cyclohexanes was found to be promoted by chitin-supported ru-

selective hydrogenation of aromatic compounds to
thenium nanoparticles (Ru/chitin) under near-neutral, aqueous
conditions without the loss of C-O/C-N linkages at benzylic

positions.

The catalytic hydrogenation of arenes is a straightforward and
hugely important method by which cyclohexanes are
produced.”” However, a major issue with this transformation
is the need to suppress the competitive hydrogenolysis of
reactive carbon-heteroatom linkages (e.g. C-O and C-N
bonds) at benzylic positions.** Attempts to address this prob-
lem typically focus on using acetic acid as a (co-)solvent in
the presence of late transition metal catalysts such as PtO,,>®
5 Rh-Pt0,,* Ru0,,** Ru/AL,0; ®” and Rh/Al,0;.” The most fre-
quently used catalysts are Ru/Al,O; or, substantially more
expensive, Rh/Al,O;. However, irrespective of the choice of
catalyst, the use of acidic reaction media is incompatible with
substrates bearing acid-sensitive functionalities such as epox-
ides and tertiary benzylic alcohols. Recently studied catalysts
that have allowed the selective arene hydrogenation of benzyl
alcohols or ethers in the absence of acidic additives include
Rh/AIO(OH),** Ru/MCM-41,*” Ru/CNF-P,°*” Rh/CNF-T** and
Ru/HPS-NR;CL° In particular, Motoyama and Nagashima ele-
gantly demonstrated the simultaneous tolerance of epoxide
and benzylic C-O functionalities using Rh/CNF-T or Ru/HPS-
NR;CL°“¢ However, with the exception of the Ru/HPS-NR;Cl
system, which utilized H,O as a solvent,’® these reactions
were typically run in hydrocarbons or polyethylene glycol.'"*
The development of catalytic systems that operate under
aqueous conditions remains strongly in demand, since it
promises a route to functionalized, water-soluble cyclohex-
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anes for applications in materials and biological sciences.*s''>
We here disclose that chitin-supported ruthenium nano-
particles (Ru/chitin) efficiently catalyze arene hydrogenation
under aqueous conditions without hydrogenolyzing C-O/C-N
bonds at the benzylic positions.

In recent work we established that Ru/chitin serves as an
efficient catalyst for the hydration of nitriles to amides under
aqueous conditions."*'* Based on this result, we reasoned
that Ru/chitin should also be suited to the chemoselective hy-
drogenation of functionalized arenes because the nitrile hy-
dration operated under near-neutral conditions'® and
supported ruthenium nanoparticles are known to be good
catalysts for arene hydrogenation,®?9%%104-4:15 Ag shown in
Table 1, the activity of Ru was tested in the hydrogenation of
benzyl glycidyl ether (1a) to cyclohexylmethyl glycidyl ether
(2a). This reaction allowed the monitoring of both reactivity
and selectivity for arene hydrogenation over hydrogenolysis
at the benzylic position or acid-/base-mediated opening of
the oxirane ring.’“'® Currently known catalysts effective in
this transformation are limited to just two tailor-made sys-
tems: Rh/CNF-T (rt, 12 h)°* and Ru/HPS-NR;Cl (30 °C, 24
h).**'7 Ru/chitin can be prepared by simple impregnation-re-
duction using inexpensive RuCl;-3H,0, NaBH, and commer-
cially available chitin under aqueous conditions and in the
absence of capping agents."* Results demonstrate that the hy-
drogenation of 1a was effectively catalyzed by Ru/chitin.
When a mixture of 1a (1.0 mmol), H,O (5 mL) and Ru/chitin
(0.8 wt%, 0.008 mmol of Ru, 0.8 mol% Ru) was stirred at 50
°C under a H, atmosphere (2 MPa), the hydrogenation was
completed within 1.5 h and cyclohexane 2a was obtained in
98% yield (Table 1, entry 1). ICP-AES on the Ru/chitin catalyst
before and after the hydrogenation cycle established that only
negligible leaching of Ru (4.2 ppm) took place during the cat-
alytic test. The hydrogenation proceeded in water with no de-
tectable loss of the C-O linkages in the substrates, there be-
ing no appreciable formation of side products 3a-6a. This
result was reproducible ("H NMR yields of 2a in separate
runs: 97, 95 and 97%). Product 2a could be isolated in 84%
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Table 1 Hydrogenation of 1a to 2a“
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Table 2 Catalytic hydrogenation of arenes (1) to cyclohexanes (2) with
Ru/chitin®

MY catalyst o1
O + 3H; H20—> o] + 3oreH Ruf/chitin (0.8 mol % Ru)
or — >
1a, 1.0 mmol 2MPa 50°C,1.5h 2a 1.0 mmol oMPa.  H20, conditions
Conv. Yield Combined  Combined Substrate (1) Conv.” Yield?*
of of 2a° yield of 3a yield of 5a Entry (conditions) (%) Product (2) (%)
Entry Catalyst 12 (%) (%) and 4a° (%) and 6a” (%) 0 99 90 [66°]
OH OH
1 Ru/chitin >99 98 <1 <1 ©/\ O/\
2 None <1 <1 <1 <1
3 Chitin 4 <1 <1 <1 1b (100 °C, 6 h) 2b
4 RuCl;-3H,0  >99 75 6 12 2 : >99 : 95 [92]
5 RuO,* 1 <1 1 <1 OH OH
6 Ru/cellulose  >99 97 2 <1
7 Ru/chitosan 47 41 <1 <1
8 Ru-ALO; 40 36 3 <1 (?.‘}1;_ - (g)_';c_ oriel
9 Ru/C 51 43 4 1 (S:R =97:3) (S:R=94:6)
10 Ru/ALO,%* 19 15 2 <1 (50 °C, 3 h) of
11 Rh/ALO;%®  >99 92 5 <1 3 >9 90 [88]
12 Ru/C** >99 87 4 7 OH OH
13 Rh/C%* >99 24 25 38
d.f
14 Pd/C 96 <1 25 69 1d (50 °C, 3 h) 2d
OoH oY 4 OH >99/ OH 79 [75]
o o OH
HO 3a 5a
R |, /\(
. (@)
chitin: R = NHCOCH
celluiose: R=OH O/ O/\ OH 1e (50 °C, 6 h) 2e
chitosan: R = NH, 4a 6a OH 13 [17]
“ Conditions: 1a (1.0 mmol), catalyst (0.8 mol% Ru) and H,O (5 mL)
at 50 °C for 1.5 h under H, (2 MPa). * Determined by "H NMR using
mesitylene as an internal standard. © GC-MS yield using n-octane as 2ea
an internal standard. ¢ Purchased from commercial suppliers. ¢ 5 5 OH 01/ OH 85 [82"]
wt% Ru or Rh./ 10 wt% Pd. ONa ONa
0 o
yield after removal of the catalyst and SiO, column chroma- (R)-1fn, (R)-2fxa
. . . . - — (a2
tography, with Ru contamination proving lower than the de- (S:R=1:99) (5:R=1:99)
O
tection limit of ICP-AES (<1 ppb). Results demonstrate that 6 (100 °C, 3 h)o <99 o 99 [93]
both ruthenium and chitin were necessary for selective arene J\ J]\
hydrogenation (entry 1 vs. entries 2-5). Moreover, heteroge- ©/\ H O/\H
neous catalysts prepared analogously to Ru/chitin but using
cellulose, chitosan, y-Al,O3; or carbon promoted arene hydro- . 1g (100 °C, 351) 99 28 o 97 [95]
genation but with lower selectivity (entries 6-9). Among
these, hydrogenation with Ru/cellulose'*® was also found to ©/\H O/\H
be distinctly effective, although appreciable amounts of side-
products were formed through hydrogenolysis (Table 1, entry 1h (100 °C, 3 h) 2h
6). Results obtained using commercially available catalysts 8 ©/\ NH*HCI >99 O/\ NH,+HCI 93 [92]
are summarized in entries 10-14. Rh/Al,O; (Sigma-Aldrich)
proved efficient (2a: 92% yield) but induced partial hydro- 1i-HCI (100 °G, 3 h) 2iHCL
genolysis to 3a or 4a (entry 11). Lastly, Ru/C (TCI)'® was also ~ ° i =99 : 9 [91]
a moderately good catalyst (2a: 87% yield) but caused @/\NHZHCI O/\ NHy+HCI
competing epoxide ring-opening (entry 12)."°
Results in Table 2 demonstrate that Ru/chitin-promoted g)-_llejf{g-l)" g)‘?f{;]é%]"
selective arene hydrogenation was compatible with benzylic (160 oc, 3.h) ' ' '
C-O or C-N linkages in alcohol, ether, amide and amino 10 NH, >99 NH, 96 [90/]
functionalities in a wide range of substrates (1b-ky,). The . ONa ONa

corresponding cyclohexanes 2b-ky, were obtained in good-to-
excellent isolated yields, with the products typically being iso-
lated by distillation or column chromatography after simply
removing the catalyst by filtration or centrifugation. Hydroge-
nation of significantly acid-sensitive benzyl alcohols 1d and
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Table 2 (continued)

Ru/chitin (0.8 mol % Ru)

+ 3or6H >
1.0 r1nmol 2?\;Pa2 H,0, conditions
Substrate (1) Conv.” Yield”*
Entry (conditions) (%) Product (2) (%)
11 o >99 o} 95 [91/]
NH, NH,
(S)-1ln, (100 °C, 6 h) 21y

o OH
ONa OH
X !
4d 6e 4fna (R)-2f

“ Conditions: 1 (0.50 or 1.0 mmol), Ru/chitin (0.8 mol% Ru), H,O (5
mL) and H, (2 MPa). ” Determined by '"H NMR using mesitylene as
an internal standard. ¢ Isolated yield in parentheses. ¢ Low yield due
to the volatile nature of the product. ® Absolute configuration and
optical purity were determined by a polarimeter and chiral GC
analyses. / Side-products were detected: entry 3, 4d (3%); entry 4, 6e
(7%); entry 5, 4fy, (6%). ¢ As indicated by the supplier. * Yield of
carboxylic acid (R)-2f after the addition of HCI aq. i Optical purity
was not determined.’ Yield of 2-HCI after the addition of HCI aq.

1e proceeded without loss of the C-O bonds (Table 2, entries
3 and 4).>° Marginal amounts of side-products were detected
when using 1d-fy, (entries 3-5). The absolute configurations
of (S)-1¢, (R)-1fy, and (S)-1j-HCI were retained under our reac-
tion conditions (entries 2, 5 and 9).>' Unfortunately, double
hydrogenation of dibenzyl ether or dibenzylamine-HCI was
sluggish due to low reactivity and competitive hydrogenolysis
at the benzylic positions.>”> However, arene 1h could be dou-
bly hydrogenated to give the dicyclohexyl analogue 2h in ex-
cellent yield (entry 7). By virtue of the aqueous conditions
used, hydrophilic sodium carboxylates 1fy, and 1ky, as well
as ammonium salts 1i-HCl and 1j-HCl could be effectively
converted to give the corresponding salts of substituted cyclo-
hexanes (entries 5, 8-10). In particular, the hydrogenation of
1kna to 2ky, represents an important route for preparing non-
standard amino acid-bearing hydrophobic cyclohexyl rings
from more accessible aromatic analogues.’®'> In a similar
vein, the hydrogenation of sodium phenylalanate (1ly,) with
Ru/chitin also gave the corresponding cyclohexyl-bearing
amino acid 2ly, in high yield (entry 11). The substrate scope
of other typical aromatic rings is summarized in Table S3.}
The hydrogenation of toluene (3a) by Ru/chitin in water
showed a turnover frequency (TOF) of 6000 h™ and a turn-
over number (TON) of 3000 based on the amount of con-
sumed H, (eqn (1)). These values are higher than or compara-
ble to those in previously reported hydrogenations of 3a in
water with other Ru or Rh catalysts (Ru: TOF and TON, 10-
2700 h™ and 240-2700; Rh: 100-11000 h™ and 300).***%*°

Ru/chitin .
(0.01 mol % Ru) 10% yield
YO o TOF 6000 h~1 (1)
3a & 420°C,0.5h 7a  TON3000

This journal is © The Royal Society of Chemistry 2016
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The reusability of the Ru/chitin catalyst was tested over
seven consecutive reductions of 1a, with the catalyst being re-
covered by centrifugation each time. Results indicated only a
modest loss of catalytic activity and selectivity (hydrogenation
of 1a: 1st run, 98% yield; 2nd run, 96% yield; 3rd run, 94%;
4th run, 90%; 5th run, 89%; 6th run, 87%; 7th run, 87%, Ta-
ble S4t). This behavior was investigated by HRTEM analysis
(Fig. 1). Analysis after either 1 or 6 hydrogenation cycles
suggested that the nanoparticles continued to incorporate
pristine metal, with an observed d-spacing of 2.14-2.17 A at-
tributed to the Ru(002) plane of Ru’. However, nanoparticle
sintering was clearly observed after repeated testing, with the
mean particle size growing from 2.3 + 0.3 nm in the fresh cat-
alyst (Fig. 1a) to 3.5 + 0.8 nm after 6 hydrogenation cycles
(Fig. 1c). TEM, EDX and XRD analyses of the as-prepared Ru
catalysts (Fig. S1-S97) suggest that 2-3 nm nanoparticles rep-
resent both the most efficient and selective of the catalysts
tested. Interestingly, results point to the inexpensive polysac-
charide supports chitin and cellulose accommodating such
particles (Table S5 and Fig. S101) more readily than other com-
mercially available supports do when using the same prepara-
tive route. Though one commercially sourced Ru/C catalyst

(a)

30 | Mean size of
nanoparticles
—_ r (N =100):
B . E
| 23+0.3nm
c
k<l |
‘d=2.15 A -
Ru(002) %10
S a |
0

1 2 3 4 5 6
Particle diameter (nm)

30
2.7+0.6 nm

d=217A
Ru(002)

Distribution (%)

1 2 3 4 5 6
Particle diameter (nm)

30
3.56+0.8nm

20

10 I I
0

1 2 3 4 5 6
Particle diameter (nm)

Distribution (%)

Fig. 1 TEM images and particle size distributions of Ru/chitin: (a) as
prepared, (b) after 1 cycle and (c) after 6 cycles of hydrogenation of 1a.
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contains comparably-sized nanoparticles, the selectivity is
lower than Ru/chitin or Ru/cellulose (Fig. S8 and Table S57).

In summary, we have prepared 2-3 nm chitin-supported
ruthenium nanoparticles in the absence of additional cap-
ping agents. They have promoted efficient hydrogenation of
arenes to cyclohexanes under near-neutral, aqueous condi-
tions, with hydrogenation taking place to the exclusion of
hydrogenolysis of normally reactive C-O and C-N linkages.
Of importance, preliminary data point to the use of this read-
ily available, environmentally benign support material being
synonymous with the generation of nanoparticles whose di-
mensions provide both excellent conversion and selectivity.
Ongoing work is seeking to more precisely investigate mor-
phological changes exhibited by Ru/chitin in order to coun-
teract the modest loss of activity after multiple hydrogenation
cycles and to assess the possibility of developing these sys-
tems in a microfluidic context.
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The reason for a small amount of racemization in Table 2,
entries 2 and 9 is not entirely clear, but we assume it to result
from dehydrogenation of alcohol or amine-HCl followed by
hydrogenation of the resulting ketones and iminium salts. This
view is based on the following observations: (1) in Table 2, entry
4, ketone 6e formed in 7% yield; (2) hydrogenation of
acetophenone with Ru/chitin under the standard conditions
yielded cyclohexyl methyl ketone (20%), 1c (27%) and 2c¢ (52%).
Hydrogenation of dibenzyl ether (100 °C, 6 h, 91% conv.)
gave a mixture of bis(cyclohexylmethyl) ether (27%), benzyl
cyclohexylmethyl ether (38%), 2b (7%) and other
unidentified products. Hydrogenation of dibenzylamine-HCl
(100 °C, 5 h, >99% conv.) gave a mixture of
bis(cyclohexylmethyl)amine-HCI (21%) and 2i-HCI (74%).
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