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Analytic calculations of anharmonic infrared and
Raman vibrational spectra

Yann Cornaton,*a Magnus Ringholm,*a Orian Louantb and Kenneth Ruuda

Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of

frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present

the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity

both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic

corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives—that

is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is

applicable to both Hartree–Fock and Kohn–Sham density functional theory. Using generalized vibrational

perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of

the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic

effects introduces combination and overtone bands that are observed in the experimental spectra. For

the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational

frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities.

Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the

calculated spectra that may arise if numerical differentiation schemes are used.

1 Introduction

The calculation of spectroscopic phenomena involving mole-
cular vibrations is an example of a successful application of
theoretical chemistry to aid the interpretation of experimental
observations. The calculation of molecular structure and vibrational
spectra was made possible by the pioneering work of Bratoz,
Pulay, Pople, Schaefer and others in developing methods for
calculating analytical geometric derivatives of the molecular
energy.1–5 Second-order geometric derivatives of the energy
have since been derived and implemented for a wide range of
correlated wave functions,3,5–13 as well as at the level of density
functional theory (DFT).14–16 For a detailed historical account
we refer to recent reviews of molecular properties in general
and molecular force fields in particular.17–19

A commonly used approximation in the study of vibrational
spectroscopies is the double-harmonic approximation,20 where
molecular vibrations are described as harmonic oscillators and
where the fundamental properties describing the spectro-
scopic intensities are determined by the first-order geometric
derivative of the polarization property governing the spectroscopic

phenomenon under study. This corresponds to a description
which obeys the well-known selection rules for e.g. infrared (IR)
and Raman spectroscopies,21 where it is the magnitude of the
first-order geometric derivative of the molecular electric dipole
moment and polarizability, respectively, that determines the
spectroscopic intensity associated with the excitation to a singly
excited state of a particular normal mode. Although coupled-
cluster theory can provide vibrational frequencies of high
accuracy,22–28 its computational cost prevents its routine use
for larger molecules. For this reason, density-functional theory
(DFT) has been gaining increasing popularity in recent years
and has been used for calculations of Raman spectra of
molecules as large as buckminsterfullerene.29 The calculations
have often been done in combination with scaling of the
frequencies in order to account for anharmonicities and errors
inherent in the exchange–correlation functional used.30,31

A typical computational protocol has been to determine the
frequencies of the (harmonic) normal modes by DFT using the
B3LYP functional coupled with intensity calculations performed at
the HF or DFT level,32–34 the choice of level of theory for the
intensity calculations depending on the computational tools
available for the calculation of the necessary geometric derivative
of the pertinent polarization property.

By leaving the double harmonic approximation, it is possible
to obtain a more accurate description of both the vibrational
frequencies and the spectroscopic intensities.23,35–38 For the
latter, the introduction of anharmonic effects will enable both
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an improved description of the intensities associated with a
single excitation of a particular normal mode as well as introduce
the leading-order contributions to intensities associated with
transitions corresponding to the simultaneous excitation of two
or more vibrational quanta, either involving only a single normal
mode or several of them, often referred to as overtone and
combination bands, respectively.

Calculations of anharmonic contributions for the purpose of
correcting vibrational frequencies have regularly been carried
out,17,23,39–41 requiring at least third-order geometric derivatives
of the molecular energy, from here on referred to as the cubic
force constants. We will refer to the corresponding fourth-order
derivatives as the quartic force constants. Calculations of the
cubic and quartic force constants have previously almost with-
out exception been done using numerical differentiation.23,41–43

The only exception is the analytic calculation of cubic and
quartic force constants at the HF level reported by Handy and
coworkers.44,45 Recently, we presented an analytic implementation
of cubic and quartic force constants at the DFT level46 by the use of
a newly developed recursive code47 for the calculation of molecular
properties by response theory.48

For the IR and (regular) Raman spectroscopies, programs
that allow for the analytic calculation of the required first-order
geometric derivatives of the dipole moment and polarizability,
respectively, have been available for some time.49–51 The calculation
of anharmonic corrections to the intensities in these spectroscopies
requires both the development of the necessary vibrational
perturbation theory38 to obtain expressions for these corrections
and the possibility of calculating second- and third-order geo-
metric polarization property derivatives, as well as the cubic and
quartic force constants, that enter into these expressions. Programs
that would allow for the analytic calculation of some of these
properties are available, but such calculations have mainly
been restricted to the HF level of theory, and for some of the
properties (and more so if a DFT description is desired),
the researcher has had to resort to numerical differentiation.
Analytic calculation offers several advantages over numerical
methods such as higher attainable accuracy and ease of com-
putation,51 as numerical derivatives are sensitive to the finite
perturbation/geometry displacements employed, and this can
have significant effects on the results if not managed care-
fully.52–54 For these reasons, analytic methods are preferred
over numerical ones.

In this work, we present the first application of our recursive
approach for the analytic calculation of the anharmonic vibrational
frequencies and infrared and Raman intensities of methanimine as
well as nitromethane and its mono- and di-deuterated iso-
topomers. Methanimine has been shown to be very sensitive
to the numerical differentiation parameters52 and thus pro-
vides a good illustration of the advantages of the analytic
approach. The nitromethane isotopomers have been selected
because experimental spectra display a large number of combi-
nation and overtone bands, for which calculation calls for the
use of an anharmonic treatment. We remark that anharmonic
effects have also been found to contribute appreciably to the
spectroscopic intensities for several other molecules.38

The rest of the paper is organized as follows: in Section 2, we
outline the theoretical foundation for the analytic calculation of
anharmonic corrections to vibrational frequencies and IR and
Raman intensities. In Section 3, we provide details about the
computational setup used for the calculations on our chosen
systems. We present and discuss the results of our calculations
in Section 4, and make some concluding remarks in Section 5.

2 Theory

We will begin in Section 2.1 by outlining how the high-order
molecular properties used in this work can be calculated
analytically through the use of our recently developed recursive
response code and then in Section 2.2 proceed to show how
these properties can be used to determine anharmonic corrections
to vibrational frequencies and IR and Raman intensities. Although
the general framework has been described previously,46–48 this
work is the first report of fifth-order analytic derivatives involving
geometrical distortions.

2.1 Analytic calculation of response properties

A detailed presentation of the response theory, which in our
approach is fundamental for the analytic calculation of the
cubic and quartic force fields and the high-order geometric
derivatives of the dipole moment and polarizability that are
needed in this work, is too long to show here, and we will
therefore restrict ourselves to the most salient features. We
refer to the original work48 for a more thorough treatment,
and to our recent work47 for a description of the recursive
implementation used in the present work.

Our analytic scheme uses as a starting point that linear
response functions described by perturbations a and b can be
formulated as perturbation strength ei (i = a, b,. . .) derivatives of
a quasienergy Lagrangian gradient, expressed in a density-
matrix (D̃) formulation as48

hhA;Biiob
¼

d ~Lað ~D; tÞ
� �

T

deb

�����
feg¼0

¼ Lab; oa ¼ �ob; (1)

where the derivative is evaluated at zero perturbation strength
and where higher-order response functions can be found by
further differentiation of eqn (1). A tilde is used to represent a
quantity considered at an arbitrary perturbation strength, and
the absence of a tilde denotes evaluation at zero perturbation
strength. The quasienergy Lagrangian L̃a is given by

~Lað~D; tÞ ¼fTrgT ~E0;a � ~Sa ~W; (2)

where we have introduced the atomic orbital (AO) overlap
matrix S̃ as

S̃mn = h~wm|~wni, (3)

where ~w is an atomic orbital, and where the energy- and
frequency-weighted Fock matrix W̃ is defined as

~W ¼ ~D ~F~Dþ i

2
ð _~D~S~D� ~D~S

_~DÞ; (4)
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where the generalized Kohn–Sham Fock matrix ~F is given by

~F ¼ ~F� i

2
~T ¼ ~hþ ~Ggð~DÞ þ ~Vt þ ~Fxc �

i

2
~T: (5)

We also introduced the generalized energy ~E as

~E ¼
fTrgT ~Eð~D; tÞ � i

2
~T~D (6)

¼fTrgT ~hþ ~Vt þ 1

2
~Ggð~DÞ � i

2
~T

� �
~Dþ ~Exc ~rð~DÞ

� �
þ ~hnuc: (7)

In eqn (5)–(7), we introduced the half-time-differentiated over-
lap matrix T̃, the one-electron matrix h̃, the external field
operator Ṽt and the two-electron matrix G̃g with g-fractional
exchange as

~Tmn ¼ ~wm
�� _~wn

	 

� _~wm

�� ~wn
	 


; (8)

~hmn ¼ ~wm �
1

2
r2 �

X
K

ZK

RK � rj j

�����
�����~wn

* +
; (9)

~Vt
mn ¼

X
a

exp �ioatð Þeâ ~wm âj j~wn
	 


; (10)

~Gg
mnðMÞ ¼

X
ab

Mba ~gmnab � g~gmban
� �

; (11)

and also the exchange–correlation contributions F̃xc and
Ẽxc[~r(D̃)] in addition to a nuclear potential operator h̃nuc. Here
and throughout the paper, atomic units are used unless other-
wise stated. Molecular properties characterized by a perturbation
tuple abc. . . can therefore be formulated as derivatives of the
quasienergy Lagrangian gradient as

La ¼fTrgT E0;a � SaW; (12)

Lab ¼fTrgT E0;ab þ E1;aDb � SabW� SaWb; (13)

Labc ¼fTrgTE0;abc þ E1;acDb þ E1;abDc þ E2;aDbDc

þ E1;aDbc � SabcW� SabWc � SacWb � SaWbc;

(14)

where we have introduced a short-hand notation for differen-
tiation and tracing by

Em;abc ¼ @mþ3E

@DTð Þm@ea@eb@ec
(15)

and

TrE2;aDbDc ¼
X
abmn

@3E

@DT
ab@D

T
mn@ea

Db
abD

c
mn ; (16)

respectively. This theory is sufficient to define any response
function using the so-called n + 1 rule formulation,55 where the
calculation of a response property of order n + 1 requires the
calculation of the density matrix perturbed to order n. However,
other formulations placing other conditions on which perturbed

density (and Fock) matrices must be calculated are possible.55

Let us represent the idempotency of the density matrix and the
time-dependent self-consistent field (TDSCF) conditions as the
matrices Y and Z, respectively, so that

Y = D̃S̃D̃ � D̃, (17)

and

Z ¼ ~F� i

2
~S
d

dt

� �
~D~S


 �~
; (18)

where the notation

[M]~ = M � M†, (19)

and

[M]" = M + M†, (20)

has been introduced, and where adjungation is defined to
happen before time differentiation. It can be shown that
the ansatz

~la = [D̃aS̃D̃]~, (21)

for the multiplier ~la for Y leads to the definition of the multiplier
~za for Z as

~za ¼ ~Fa ~D~S� 1

2

� �
� ~F~D� i

2
_~S~D� i~S

_~D

� �
~Sa


 ��
: (22)

It is then possible to make a general expression for the quasi-
energy Lagrangian for the calculation of response properties as

A;B;C; . . .h ih iobc...
¼ Labc...

k;n ¼fTrgT Eabc...
k;n � SaWð Þbc...nW

� SaWð Þbc...kS ;n
0
W

� laYð Þbc...kl;n
0
Y
� zaZð Þbc...kz ;n

0
Z
;

(23)

where the values of k and n in the various terms denote, with
minor variations, to which orders perturbed Fock and density
matrices must be calculated in order to evaluate this expression:
the value of k determines to which order the perturbed matrices
must be calculated for perturbation tuples involving perturbation
a, whereas the value of n determines the same for perturbation
tuples not involving perturbation a. We have that k + n = N � 1,
where N is the order of the property considered, and k must
be chosen as an integer in the interval k A [0,(N � 1)/2], where
(N � 1)/2 is rounded down for even N. In this work, we
do not discuss how the necessary perturbed Fock and density
matrices can be calculated, as it is described in detail in ref. 48.
We remark, however, that since the calculation of high-order
properties requires solving linear response equation systems
and since this part of the calculation is computationally expensive,
a judicious (k,n) rule choice may give a significant reduction in
the number of such systems to be solved, both compared to
other rule choices and to numerical differentiation schemes.
For instance, for the calculation of cubic force constants, the
choice (k,n) = (1,1) makes it necessary to solve M systems,
where M is the number of geometrical coordinates, whereas
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(k,n) = (0,2) results in M2 such systems. Similarly, a scheme
where an analytically calculated molecular Hessian is differentiated
numerically by nuclear displacements results in the number of such
systems being of the order of M2. Similar savings can be achieved
for other properties.

With the recursive program developed by our group,47 it is
possible to evaluate eqn (23) for any response property, including
the calculation of the required perturbed Fock and density
matrices, as long as external routines are available that can provide
the necessary (un)perturbed one- and two-electron integral
contributions,56–58 exchange–correlation contributions59,60 and
perturbed nuclear potential contributions, and solve the response
equations61,62 that arise during the evaluation of perturbed Fock
and density matrices. More information about the external
modules used in this work is given in Section 3. All such
modules used in the present work have been parallelized;
see e.g. ref. 63.

2.2 Anharmonic corrections to vibrational frequencies and
spectroscopic intensities

Having determined the harmonic vibrational frequencies and
normal modes of vibration from the well-established eigen-
analysis of the molecular Hessian,20 it is possible to make
anharmonic corrections to fundamental vibrational frequencies
and frequencies corresponding to combination or overtone
excitations of the normal modes by a second-order perturbational
approach, where the resulting expressions involve the cubic
and quartic force constants and Coriolis vibration–rotation
coupling constants. In the VPT2 approach,23,35,36 the corrected
fundamental vibrational frequencies ni1, first overtone frequen-
cies ni2 and first combination frequencies ni1j1 are given as,
respectively

ni1 ¼ oi þ 2Xii þ
X
jai

Xij

2
; (24)

ni2 = 2ni1 + 2Xii, (25)

ni1j1 = ni1 + nj1 + Xij, (26)

where the diagonal and off-diagonal correction terms Xii and Xij

are given by

Xii ¼
fiiii

16
�
X
k

fiik
2 8oi

2 � 3ok
2

� �
16ok 4oi

2 � ok
2ð Þ (27)

and

Xij ¼
fiijj

4
�
X
k

fiikfjjk

4ok
�
X
k

fijk
2ok oi

2 þ oj
2 � ok

2
� �

2Oijk

þ
X
a

Ba zaij
� �2 oi

oj
þ oj

oi

� �
;

(28)

where Oijk is defined as

Oijk = (oi + oj + ok)�(�oi + oj + ok)�(oi � oj + ok)�(oi + oj � ok).
(29)

In the above expressions, oi denotes a harmonic fundamental
frequency, fijk and fijkl are cubic and quartic force constants,
respectively, Ba is the rotational constant for axis a, and zaij is a
Coriolis coupling constant.

The method chosen in the present work is the so-called
generalized vibrational second-order perturbation (GVPT2)
model.38,41 In this method, a VPT2 treatment of the molecular
vibrations is used, except for the cases where Fermi resonances
are considered to have occurred. In these cases, the terms in
the VPT2 treatment that are affected by the Fermi resonance
are not included,23 and the affected frequencies are instead
resolved in a variational approach.

Expressions for corrections to spectroscopic intensities can
also be identified by a perturbation-theory approach. In a
recent work by Bloino and Barone,38 GVPT2 expressions for
IR and Raman intensities have been derived. The expression for
the IR intensities is

IIR;ni ¼
8p3NAni

3000 lnð10Þhc 4pe0ð Þ
X
a

mah i0i2 (30)

and in classical Raman spectroscopic measurements, the
unpolarized (as well as polarized) scattering intensity at a
temperature T, related to the Raman cross section, is given by

IRaman;ni ¼
h n0 � nið Þ4

8p2cni 1� exp �hcni
kT

� �� � 45ai
0 2 þ 7bi

0 2
� �

; (31)

where

ai
0 ¼ 1

3

X
a

aaah i0i (32)

and

bi
0 2 ¼ 1

2

X
a

X
baa

1

2
aaah i0i� abbh i0i

� �2þ3 aabh i0i
� �2� �

; (33)

where ni = oi in the harmonic approximation and is given
by eqn (24)–(26) in the anharmonic GVPT2 treatment, n0 is
the frequency of the incident laser in the Raman experiment,
and h i0i represents the transition moment of the relevant
polarization property from the vibrational ground state to the
ith vibrational excited state. In the double-harmonic treatment,
these transition moments are determined by first-order geo-
metric derivatives of the polarization property (hPi0i1 = qP/qqi),
whereas the anharmonic expressions also involve the second-
and third-order geometric derivatives of the polarization property
and the cubic and quartic force constants. The resulting expres-
sions in the anharmonic case are large and we refer to the
work of Bloino and Barone38 where the complete expressions
are reported.

Altogether, the expressions used in the complete VPT2
treatment involve the first-, second-, and third-order geometric
derivatives of the molecular electric dipole moment and polar-
izability in the IR and Raman case, respectively, in addition to
the cubic and quartic force constants, meaning that the
highest-order property that must be calculated, i.e. the cubic

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Ja

nu
ar

y 
20

16
. D

ow
nl

oa
de

d 
on

 8
/2

/2
02

5 
9:

22
:4

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5cp06657c


This journal is© the Owner Societies 2016 Phys. Chem. Chem. Phys., 2016, 18, 4201--4215 | 4205

force constants of the frequency-dependent polarizability, is a
-order energy derivative. The contributions to this property
can be identified from eqn (23) and are shown here in order
to demonstrate the complexity involved in the analytic calculations
performed in this work and to justify the use of a recursive
approach.

The third-order geometric derivative of the polarizability
can be defined from a perturbation tuple (a, b, c, d, e),
where perturbations a, b and c correspond to differentiation
with respect to geometrical displacements, and d and e to
differentiation with respect to a frequency-dependent electric
dipole perturbation. Denoting a geometric perturbation as g
and the two electric dipole perturbations as fo and f�o, where,
respectively, each perturbation is associated with a positive or
negative frequency o, eqn (23) takes the form

L
gggfof�o
2;2 ¼fTrgTEgggfof�o

2;2 � SgWð Þggfof�o2W
� SgWð Þggfof�o

2S ;2W
0

� lgYð Þggfof�o
2l;2Y

0 � zgZð Þggfof�o
2z;2Z

0 ;

(34)

where the rule choice (k,n) = (2,2) is used because this will give
the lowest computational cost. Omitting terms that must be
zero straightforwardly or because, in the differentiation carried
out, there was lack of dependence on the perturbation operators
and, for the sake of brevity, writing contributions that are
permutations of identical operators only once, the terms in
eqn (34) can be written as

E
gggfof�o
2;2 ¼fTrgTE1;gggDfof�o þ E1;gggf�oDfo þ E1;gggfoDf�o

þ E1;ggf�oDgfo þ E1;ggfoDgf�o þ E2;gDggDfof�o

þ E2;gDgf�oDgfo þ E2;ggDgDfof�o þ E2;ggDgf�oDfo

þ E2;ggDgfoDf�o þ E2;gggDf�oDfo þ Egggfof�o
xc ;

(35)

SgWð Þggfof�o2W
¼fTrgT SgggWfof�o ; (36)

SgWð Þggfof�o
2S ;2W

0 ¼
fTrgT

SgW
ggfof�o
20 þ SggW

gfof�o
20 ; (37)

lgYð Þggfof�o
2l ;2Y

0 ¼fTrgTlgYggfof�o
20 þ lggY

gfof�o
20 þ lfog Y

ggf�o
20

þ lf�og Y
ggfo
20 ;

(38)

and

zgZð Þggfof�o
2z;2Z

0 ¼fTrgT zgZggfof�o
20 þ zggZ

gfof�o
20 þ zfog Z

ggf�o
20 þ zf�og Z

ggfo
20 ;

(39)

where, for example, Wgfof�o
20 from eqn (37) is

W
gfof�o
20 ¼ o

2
DfoSDgf�o þDgfoSDf�o þDgfoSDf�o þDfoSgDf�o
�
þDfoSDgf�o þDfoSgDf�o

�~
þ DFgDfof�o þDFgf�oDfo þDFgfoDf�o þDFf�oDgfo
�
þDFfoDgf�o þDFfof�oDgþDgFDfof�o þDgFf�oDfo

þDgFfoDf�o þDgf�oFDfo þDgfoFDf�o þDf�oFgDfo
��
;

(40)

and where the other differentiated W, Y, and Z terms are of a
similar complexity. We consider the length of these expressions,
in particular eqn (40), and the corresponding complexity in
treating them, as strongly supporting the use of a recursive
approach for calculations of the high-order properties required
for the GVPT2 treatment, and in a similar manner, automated
approaches based on automatic differentiation are needed in
order to evaluate the differentiated exchange–correlation energy

and kernel Egggfof�o
xc .59

3 Computational details

To compute the cubic and quartic force constants and the first-,
second- and third-order geometric derivative tensors of the
electric dipole moment and of the electric dipole polarizability,
the recursive implementation47 of the open-ended response
theory framework of Thorvaldsen et al.48 has been used. This
formalism has been implemented in a development version of
the Dalton2013 program package.64,65 The linear response
solver of Jørgensen et al.61 has been used for the solution of
the response equations. Differentiated one- and two-electron
integrals were computed using the Gen1Int56,57 and Cgto-
Diff-Eri58,66 programs, respectively, except for some of the
lower-order two-electron integral geometric derivatives which
were computed using existing functionality in Dalton. The
differentiated exchange–correlation (XC) energy and potential
contributions up to fifth order needed in the DFT calculations
were computed using the XCFun library,59,60 where the integrator
XCInt has been used for the integration of the XC contributions.
The calculation of the Coriolis coupling constants is not done in
a response theory framework, but have been calculated in the
manner outlined in ref. 67.

All calculations have been performed at the DFT level of
theory using the B3LYP hybrid functional.68–70 This functional
has already been shown to give good results for the calculation
of higher-order properties in earlier work.46,71 Dunning’s
correlation-consistent polarized triple-z (cc-pVTZ) basis set72

has been used. The study was conducted for methanimine
(CH2NH), and nitromethane (CH3NO2) and its mono- (CH2DNO2)
and di-deuterated (CHD2NO2) isotopomers. Two conformations
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(eclipsed and staggered) have been considered for the non-
deuterated isotopomer and four (H-eclipsed, D-eclipsed,
H-staggered and D-staggered) for each deuterated isotopomer
(cf. Fig. 1).

For each system, the geometry was optimized and the
molecular Hessian and the rotational constants were computed
using the Dalton2013 program package.64,65 The other relevant
molecular properties were computed at the optimized geometry
using the recursive response property implementation, and
the Coriolis coupling constants have been implemented in a
development version of Dalton2013. The molecular Hessian
was then used in a vibrational analysis to find the harmonic
vibrational frequencies and to transform the geometric differ-
entiation in the property tensors from a Cartesian basis to a
reduced normal coordinate basis73 to calculate anharmonic
frequencies and spectral intensities.

Anharmonic corrections to the fundamental frequencies, as
well as first overtones and combination band frequencies were
calculated from the cubic and quartic force constants, the
rotational constants and the Coriolis coupling constants using a
scheme based on vibrational second-order perturbation theory35,36

as described in Section 2.2, where terms found to be affected by
Fermi resonances are taken out of the perturbational treatment23

and resolved variationally41 using the GVPT2 model.38

First-order geometric derivatives of the electric dipole and
electric dipole polarizability in the reduced normal coordinate
basis were used for the evaluation of the harmonic IR inten-
sities and Raman scattering cross-sections, respectively. Anhar-
monic corrections to the spectral intensities were calculated by
further considering the second and third geometric derivatives
of the corresponding properties and the cubic and quartic force
constants, in a reduced normal coordinate basis, using the
GVPT2 model, resulting in features associated with corrections
to the fundamental bands and the appearance of the first
overtone and combination bands.

For methanimine, the cubic and quartic force fields have
also been evaluated by numerical differentiation from the

molecular Hessians calculated for Cartesian displacements dx
of 10�2 and 10�3 Å with Dalton2013 using the expressions

Exixjxk ¼
Exixj x0k þ dx

� �
� Exixj x0k � dx

� �
2dx

; (41)

Exixjxkxl ¼ 1

ð2dxÞ2 Exixj x0k þ dx; x0l þ dx
� ��

� Exixj x0k þ dx; x0l � dx
� �

� Exixj x0k � dx; x0l þ dx
� �

þ Exixj x0k � dx; x0l � dx
� ��

;

(42)

where Exixj, Exixjxk and Exixjxkxl represent, respectively, the second-,
third- and fourth-order derivatives of the energy with respect
to the Cartesian components in superscript, and using conver-
gence thresholds of 10�8 for both the molecular orbital (MO)
coefficients and relative to the norm of the perturbed MO
coefficients when solving the response equations. The same
convergence criteria have been applied to all fully analytic
calculations. We remark that the errors in the calculated properties
resulting from these strict thresholds are negligible.

The first, second and third geometry derivatives of the
electric dipole moment and polarizability have also been evaluated
this way and with the same convergence thresholds, but using
the expressions

Pxi ¼ P xi þ dxð Þ � P xi � dxð Þ
2dx

; (43)

Pxixj ¼ 1

ð2dxÞ2 P x0i þ dx; x0j þ dx
� �

� P x0i þ dx; x0j � dx
� ��

� P x0i � dx; x0j þ dx
� �

þ P x0i � dx; x0j � dx
� ��

;

(44)

Pxixjxk ¼ 1

ð2dxÞ3 P x0i þ dx; x0j þ dx; x0k þ dx
� ��

� P x0i þ dx; x0j þ dx; x0k � dx
� �

� P x0i þ dx; x0j � dx; x0k þ dx
� �

þ P x0i þ dx; x0j � dx; x0k � dx
� �

� P x0i � dx; x0j þ dx; x0k þ dx
� �

þ P x0i � dx; x0j þ dx; x0k � dx
� �

� P x0i � dx; x0j � dx; x0k þ dx
� �

þ P x0i � dx; x0j � dx; x0k � dx
� ��

;

(45)

where P denotes either the electric dipole moment or the electric
polarizability, and Pxi, Pxixj and Pxixjxk represent respectively the
first, second and third derivatives with respect to geometry
distortions.

Fig. 1 Newman projection of the different conformations of nitro-
methane considered.
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The spectral bands have been modeled using Lorentzian
functions for the band shape with a 10 cm�1 full width at
half maximum. A 1 cm�1 resolution was used to plot all
spectra. Raman spectra have been evaluated considering an
incident laser wavelength of 514 nm, corresponding to an Ar+

laser at 298.15 K.

4 Results and discussion
4.1 Reliability of the approach: methanimine

In this section, we will illustrate the need for analytic differ-
entiation techniques by calculating the infrared and Raman
spectra of methanimine (CH2NH), comparing the analytic
approach to the results obtained by numerical differentiation
using different step lengths. The sensitivity of methanimine
to numerical differentiation parameters52 makes it a suitable
system for illustrating the advantages of using an analytic
approach.

The theoretical vibrational frequencies obtained using the
different approaches are compiled in Table 1. Experimental
values74,75 are also presented for comparison.

In the case of numerical differentiation using a step length
of dx = 10�3 Å, the difference in Hessian values between some
of the displaced systems was smaller than the numerical
precision, thus illustrating one of the problems of this approach.
This can be illustrated by the anharmonic correction to the
vibrational frequency of the 91 mode which is positive, whereas
anharmonic corrections are generally expected to be negative,
as is obtained in the analytic approach and when a step length
of dx = 10�2 Å is used in the numerical differentiation
approach. The anharmonic corrections to the vibrational fre-
quencies of the high-frequency modes appear less sensitive to
this problem. The analytic approach does not depend on the
energy difference between slightly displaced systems and is
therefore free from this source of numerical error.

Using a step length of dx = 10�2 Å for the numerical
differentiation, numerical noise is largely avoided and the
anharmonic frequencies are in better agreement with experi-
mental fundamental frequencies. This is also observed for the
anharmonic frequencies obtained by analytic differentiation.
Nevertheless, the numeric anharmonic corrections are still on

average in error by about 10% compared to the analytic correc-
tions, the latter being always larger than the former.

Fig. 2 and 3 show, respectively, the calculated infrared
and Raman spectra of methanimine for the analytical and
numerical approaches. In the calculated infrared spectrum,
using a step length of dx = 10�3 Å in the numerical differentiation,
not only are the anharmonic corrections to the frequencies in
poor agreement with the analytic ones, but so are also the
corrections to the intensities, most strikingly so for the low-
frequency peaks. In this case, for the IR spectrum, the dx = 10�3 Å
numerical differentiation reproduces the analytic anharmonic
spectral intensities almost perfectly for the peaks of frequency
above 2900 cm�1 but overestimates (in absolute value) drastically
the intensity for the other peaks, the lower the frequency the
larger the overestimation.

Numerical (dx = 10�2 Å) and analytic anharmonic correc-
tions to the spectral intensities both go in the same direction
for each individual peak, but the magnitude of the corrections
differs. The difference in the intensity of the anharmonic
corrections to the infrared intensities between the numerical
and analytic values varies from 10 to 230% of the analytic
correction depending on the peak considered, with the majority

Table 1 Calculated (harmonic, numerical anharmonic and analytic anhar-
monic) and experimental normal vibrational frequencies of CH2NH (in
cm�1)

Mode oi nnum.
i (10�2 Å) nnum.

i (10�3 Å) nanal.
i 2nexpt

i
a

1 n(NH) 3424 3251 3250 3240 3263
2 na(CH2) 3100 2932 2922 2923 3024
3 ns(CH2) 3007 2844 2827 2839 2914
4 n(CN) 1712 1681 1685 1677 1638
5 d(CH2) 1492 1465 1450 1463 1452
6 d(HNC) 1373 1336 1303 1332 1344
7 t(CH2) 1169 1138 1100 1135 1127
8 o(CH2) 1101 1081 999 1078 1061
9 r(CH2) 1075 1063 1087 1062 1058

a Experimental data from ref. 74 and 75.

Fig. 2 Theoretical infrared spectrum of CH2NH comparing different
derivation approaches.

Fig. 3 Theoretical Raman spectrum of CH2NH comparing different deri-
vation approaches.
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of the corrections being in error by 35–85%, the only exceptions
being the low-energy modes 81 and 91. However, there is no
trend as to whether the numerical corrections under- or over-
estimate the analytic results. As the anharmonic corrections to
the total intensity of the peaks is small, these differences are
not easily visible from the spectra plotted in Fig. 2.

For the Raman spectra, numerical noise does not affect the
derivatives of the electronic polarizability when using a step
length of dx = 10�3 Å. The numerical anharmonic corrections to
the spectral intensities are thus in better agreement with the
analytic ones than in the infrared case, but the corrections
to the vibrational frequencies remain wrong. Considering
the intensities, the numerical spectrum obtained using a step
length of dx = 10�3 Å shows differences of less than 10%
compared to the analytic spectrum, and is thus in better
agreement than the spectrum obtained using a step length of
dx = 10�2 Å, where these differences may be as large as 20%.
The only exception is the 81 mode, for which both step lengths
give corrections that are far from the analytic one. As for the IR
spectra, the calculated corrections can be both larger and
smaller than the analytic result and whether the corrections
are over- or underestimated also depends on the step length. It
should also be noted that, depending on the step length used,
the ordering of the intensity of the peaks can differ. For
example, in the case of dx = 10�2 Å, 11 is slightly more intense
than 21, whereas with dx = 10�3 Å, the 21 peak is more intense
than 11, in agreement with the analytic differentiation results.

This example illustrates that even if the use of numerical
differentiation can lead to qualitatively sound results, it still
depends strongly on the step length used. While methanimine
is still a rather small molecule, it could still be expected that
these difficulties will be present in larger systems. On this note,
we now turn our attention to using the analytic approach to
calculate anharmonic vibrational spectra and compare these
with available experimental observations.

4.2 Comparison with experiment: nitromethane

In Section 4.2.1, we will present and discuss the computed
vibrational frequencies, before we in Sections 4.2.2 and 4.2.3
turn to a discussion of the theoretical IR and Raman spectra,
respectively, comparing our theoretical results to available
experimental data.

All experimental and theoretical studies76–79 on the geo-
metry of nitromethane agree that the barrier (DE = 9.6mEh

76)
for the rotation of the methyl group around the CN axis is very
small, with the staggered conformation being slightly more
stable. Our results reproduce quantitatively the barrier height
(DEB3LYP = 10mEh). Such a low barrier makes it necessary to
consider several rotamers when modeling the theoretical spectra,
and for this reason all the geometries corresponding to the
extrema of the energy along the rotation of the methyl group
are considered in this study (cf. Fig. 1). A Boltzmann averaging
at room temperature of these rotamers would give a quasi-equal
weight for each of the conformers, and for this reason all
rotamers will thus be considered of equal weight in the averaging
of the spectra from the different rotamers. We note that such a

treatment for the low-frequency internal rotation of the methyl
group has to be considered approximate, and that this vibration
mode probably should be treated by a non-local representation
going beyond the normal-mode approximation. For this reason,
we will in the following not include this mode in the anharmonic
treatment.

4.2.1 Vibrational frequencies. For all rotamers of each
isotopomer, the frequency corresponding to the rotation of
the methyl group is found to be quite small at the harmonic
level and negative at the anharmonic level, which is consistent
with what can be expected for a quasi-free rotating methyl
group.76,77 The observed spectra should therefore come from
the average over all the rotamers. For this study, only the extremum
rotamers (staggered and eclipsed) have been considered
(cf. Fig. 1), and the system has been treated as having only 14
normal modes (instead of 3N � 6 = 15) by not considering the
derivatives with respect to the methyl rotation mode in the
anharmonic calculations.

Using partially deuterated isotopomers lowers the symmetry
of the system, thus allowing new rotamers to be spectroscopically
active and giving rise to band splittings.77,78 Calculated (harmonic
and anharmonic) frequencies for the fundamentals of the non-,
mono- and di-deuterated isotopomers of nitromethane are
compiled in Tables 2, 3 and 4, respectively. Experimental
frequencies77,79–81 are also given for comparison.

The computed harmonic fundamental frequencies are,
in line with previous findings,79 found to be overestimated
compared to experiment. Even with anharmonic corrections,
the frequencies are in many cases overestimated compared
to the experimental data, but lead to a significantly better
agreement with experiment. The differences in the calculated
vibrational frequencies for the different rotamers are in general
very small. Indeed, very similar vibration frequencies are found
for the two rotamers of CH3NO2 at both the harmonic and
anharmonic level of calculation, the largest difference being
9 cm�1. The calculated vibrational frequencies are also in very good
agreement with the experimental assignments of the modes.80–83

Table 2 Calculated (harmonic and anharmonic) and experimental normal
vibrational frequencies of CH3NO2 (in cm�1)

Mode

Eclipsed Staggered Expt.a

oi ni oi ni ni

1 na(CH3) 3194 3039 3193 3038 3080
2 ns

0(CH3) 3161 3005 3161 3006 3045
3 ns(CH3) 3076 2956 3074 2953 2974
4 na(NO2) 1632 1583 1632 1584 1583
5 ds

0(CH3) 1477 1427 1478 1427 1434
6 da(CH3) 1466 1416 1464 1414 1410
7 ns(NO2) 1427 1388 1427 1388 1397
8 ds(CH3) 1398 1356 1399 1358 1380
9 r>(CH3) 1136 1107 1136 1106 1131
10 rJ(CH3) 1109 1081 1109 1084 1096
11 n(CN) 925 898 924 898 918
12 d(NO2) 657 640 662 645 657
13 o(NO2) 624 614 616 605 603
14 r(NO2) 482 475 481 475 475

a Experimental data from ref. 79 and 80.
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Experimentally, two peaks are assigned in the infrared
spectrum to the stretching mode of the C–D bond in CH2DNO2:
A strong mode at 2266 cm�1 corresponding to the stretching
perpendicular to the plane of the nitro group, and a weak one at
2276 cm�1 corresponding to the stretching parallel to the same
plane.79 We find that the maximum frequency for the n(CD)
mode is found for the D-eclipsed geometry in both the harmonic
and anharmonic treatment, and the frequency decreases the
further away the deuterium atom is from the NO2 plane.

A similar behaviour is also observed for the stretching of
the CH bond in CHD2NO2, with a strong band at 3029 cm�1

corresponding to stretching perpendicular to the plane of the
nitro group, and a weak band at 3014 cm�1 corresponding to
stretching parallel to the same plane.79 The maximum frequency
for the n(CH) mode is found for the H-eclipsed geometry in both
the harmonic and anharmonic treatment, and the frequency then
decreases the further away the hydrogen atom is from the NO2

plane, in analogy to the observations for CH2DNO2.

4.2.2 Infrared spectra. The infrared spectrum is calculated
by summing the calculated spectra of the three rotamers. The
harmonic and anharmonic calculated infrared spectra for non-,
mono- and di-deuterated isotopomers are shown in Fig. 4–6,
respectively. Tables 5–7 show the calculated infrared spectral
intensities (before Lorentzian normalization) for the normal
modes of the non-, mono- and di-deuterated isotopomers.

For the three isotopomers considered in this study, the
anharmonic corrections do not substantially change the relative
intensities of the different fundamental bands below 2000 cm�1.
In this region, the main improvements arising from the anharmonic
treatment is in the calculated vibrational frequencies, as discussed in

Table 4 Calculated (harmonic and anharmonic) and experimental normal
vibrational frequencies of CHD2NO3 (in cm�1)

Mode

D-eclipsed H-eclipsed D-staggered H-staggered Expt.a

oi ni oi ni oi ni oi ni ni

1 nm(CH) 3170 3020 3159 3010 3029
1 n>(CH) 3135 2986 3120 2970 3014
2 na(CD2) 2368 2279 2344 2256 2353 2265 2375 2284 2300
3 ns(CD2) 2251 2175 2248 2170 2246 2171 2256 2185 2194
4 na(NO2) 1624 1575 1628 1580 1626 1578 1622 1574 1574
5 ns(NO2) 1421 1377 1420 1375 1420 1375 1421 1378 1388
6 dJ(CH) 1313 1277 1316 1277 1315 1276 1304 1271 1283
7 d>(CH) 1294 1258 1298 1266 1297 1267 1297 1258 1264
8 d(CD2) 1076 1046 1060 1031 1065 1036 1080 1051 1057
9 w(CD2) 997 972 984 957 992 966 999 973 988
10 n(CN) 912 890 957 937 937 916 908 886 895
11 r(CD2) 896 878 902 881 902 881 886 868 888
12 d(NO2) 639 623 634 618 642 626 634 618 640
13 w(NO2) 578 568 560 551 556 547 591 581 559
14 r(NO2) 444 439 452 446 450 444 437 432 443

a Experimental data from ref. 79 and 81. Fig. 4 Infrared spectrum of CH3NO2: (top) harmonic; (middle) anharmo-
nic; (bottom) experimental gas phase.84

Table 3 Calculated (harmonic and anharmonic) and experimental normal
vibrational frequencies of CH2DNO2 (in cm�1)

Mode

D-eclipsed H-eclipsed D-staggered H-staggered Expt.a

oi ni oi ni oi ni oi ni ni

1 na(CH2) 3160 3003 3188 3033 3193 3037 3173 3018 3071
2 ns(CH2) 3108 2971 3113 2975 3121 2985 3104 2965 3002
3 nJ(CD) 2321 2249 2313 2244 2276
3 nm(CD) 2294 2197 2283 2191 2266
4 na(NO2) 1626 1578 1630 1581 1631 1581 1627 1579 1578
5 d(CH2) 1452 1407 1459 1413 1462 1413 1454 1408 1426
6 ns(NO2) 1415 1372 1421 1377 1420 1376 1418 1375 1387
7 o(CH2) 1318 1286 1311 1280 1310 1271 1315 1283 1288
8 r(CH2) 1303 1267 1287 1250 1285 1249 1296 1260 1258
9 d>(CD) 1084 1054 1082 1055 1080 1054 1084 1055 1068
10 dJ(CD) 945 918 976 951 988 963 955 929 957
11 n(CN) 900 881 911 889 916 892 904 883 898
12 d(NO2) 645 628 651 635 661 645 645 629 651
13 o(NO2) 616 605 586 576 561 551 607 596 579
14 r(NO2) 455 449 466 460 476 470 456 450 454

a Experimental data from ref. 79, 80 and 77.

Fig. 5 Infrared spectrum of CH2DNO2: (top) harmonic; (bottom)
anharmonic.
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the previous section. This observation is in agreement with the
findings of Bloino and Barone38 using the GVPT2 approach with

numerical calculation of the anharmonic IR spectra for a series of
molecules.

For all three isotopomers, a weak feature appears in the
anharmonic spectrum around 2940 cm�1 arising mainly from
the combination of the symmetric (mode 4 for all isotopomers)
and asymmetric (mode 7 for CH3NO2, mode 6 for CH2DNO2 and
mode 5 for CHD2NO2) stretching modes of the NO2 fragment.

The experimental gas-phase spectrum of CH3NO2 from
ref. 84 is reproduced in Fig. 4 for comparison. As already noted,
a low-intensity feature around 3000 cm�1, also appearing in the
experimental spectrum, is introduced with the anharmonic
treatment. The main peak of this feature, at 2955 cm�1, arises
mainly from the 4171 combination band and a minor contribu-
tion from the 31 fundamental band. Apart from the 11 and
21 fundamental bands (3038 and 3005 cm�1, respectively),
another low-intensity combination band, 4181 at 2933 cm�1,
appears from the anharmonic treatment. Other low-intensity
peaks, also present in the experimental spectrum, appear due
to the 41111 combination band at 2471 cm�1 and the 72 overtone
band at 2768 cm�1.

In the CH2DNO2 spectrum, a small shoulder arising from
the 101121 combination band of the H-eclipsed conformer and
the 91131 combination band from the D-staggered conformer
appears on the most intense peak. These two bands are combi-
nations of an angular vibration of the NO2 fragment and an
angular motion of the CD fragment. A low-intensity band
appears from the anharmonic treatment around 3000 cm�1.
The main peak of this band, around 2933 cm�1, corresponds to
the 4161 combination band from all four conformers. The rest
of the features of this band arise from the 11 and 21 funda-
mental bands of the four conformers. Other low-intensity peaks
appear in the anharmonic spectrum around 2738 cm�1 due
to the 62 overtone band of the four conformers and around
2462 cm�1 due to the 41111 combination band from the
H-eclipsed and D-staggered conformers.

In the CHD2NO2 spectrum, the anharmonic treatment gives
a modification in the shape of the (broad) band between 1230
and 1280 cm�1, mainly due to the 61 and 71 fundamental bands

Fig. 6 Infrared spectrum of CHD2NO2: (top) harmonic; (bottom)
anharmonic.

Table 6 Calculated (harmonic and anharmonic) infrared spectral intensities of CH2DNO2 (in km mol�1)

Mode

D-eclipsed H-eclipsed D-staggered H-staggered

IIR
harm IIR

anharm IIR
harm IIR

anharm IIR
harm IIR

anharm IIR
harm IIR

anharm

1 na(CH2) 0.78 1.45 1.68 3.33 0.52 1.26 0.73 1.19
2 ns(CH2) 0.27 0.71 1.13 1.85 2.55 3.50 2.06 2.36
3 nJ(CD) 1.47 1.72 0.41 0.53
3 nm(CD) 0.48 0.61 0.46 0.48
4 na(NO2) 313.97 294.68 313.42 267.47 311.69 274.00 5.07 3.64
5 d(CH2) 30.95 32.68 11.91 11.03 8.97 7.29 15.32 16.77
6 ns(NO2) 100.44 89.24 99.15 97.13 98.87 96.26 86.22 66.26
7 o(CH2) 4.65 3.47 7.35 8.87 11.06 13.08 8.14 7.37
8 r(CH2) 5.31 4.95 25.75 25.70 29.24 28.43 4.85 2.96
9 d>(CD) 2.82 3.00 3.63 3.42 5.75 5.32 53.61 53.65
10 dJ(CD) 11.45 12.49 5.27 5.23 0.84 0.75 14.51 15.02
11 n(CN) 13.74 15.52 15.13 17.67 15.82 18.57 20.68 22.56
12 d(NO2) 18.02 25.69 17.14 14.77 16.51 14.24 24.34 23.03
13 o(NO2) 3.54 3.10 4.67 4.35 5.46 5.02 224.51 219.61
14 r(NO2) 0.32 0.39 0.85 0.95 0.74 0.88 4.88 4.97

Table 5 Calculated (harmonic and anharmonic) infrared spectral inten-
sities of CH3NO2 (in km mol�1)

Mode

Eclipsed Staggered

IIR
harm IIR

anharm IIR
harm IIR

anharm

1 na(CH3) 2.15 3.94 0.57 1.29
2 ns

0(CH3) 1.78 2.63 2.25 3.14
3 ns(CH3) 2.36 2.65 0.71 1.07
4 na(NO2) 580.62 550.36 298.07 251.14
5 ds

0(CH3) 94.00 92.23 11.30 11.33
6 da(CH3) 9.70 9.50 41.14 38.85
7 ns(NO2) 38.31 40.69 54.95 41.37
8 ds(CH3) 2.24 0.47 52.25 68.51
9 r>(CH3) 1.26 1.34 1.22 1.43
10 rJ(CH3) 30.97 30.22 11.83 8.53
11 n(CN) 5.10 6.34 15.56 18.63
12 d(NO2) 39.17 37.49 17.19 14.45
13 o(NO2) 7.44 6.84 5.37 5.08
14 r(NO2) 1.76 1.90 0.82 0.97
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and from the 122 overtone band. A weak band appears around
1505 cm�1, due to the 101121 and 111121 combination bands
from the four conformers. A low-intensity peak, corresponding
to the 4151 combination band, appears around 2930 cm�1

from the anharmonic treatment. In addition to the peak at
3020 cm�1, corresponding to the 11 fundamental band of the
H-eclipsed conformer, another low-intensity peak appears in
the anharmonic spectrum around 2740 cm�1 and is due to the
52 overtone band.

4.2.3 Raman spectra. As done for the IR spectra, the Raman
spectra were obtained as the sums of Raman spectra for the
individual rotamers. The calculated harmonic and anharmonic
Raman spectra for non-, mono- and di-deuterated isotopomers
are shown in Fig. 7–9, respectively. Tables 8–10 show the calculated
Raman spectral intensities (before Lorentzian normalization)

Table 7 Calculated (harmonic and anharmonic) infrared spectral intensities of CHD2NO3 (in km mol�1)

Mode

D-eclipsed H-eclipsed D-staggered H-staggered

IIR
harm IIR

anharm IIR
harm IIR

anharm IIR
harm IIR

anharm IIR
harm IIR

anharm

1 nm(CH) 2.26 3.29 1.45 0.55
1 n>(CH) 0.51 1.02 0.54 0.90
2 na(CD2) 1.29 1.47 0.79 0.75 1.38 0.73 0.71 1.07
3 ns(CD2) 0.69 0.84 0.20 0.26 0.22 0.08 1.30 1.50
4 na(NO2) 325.55 304.44 318.48 290.41 320.01 291.90 328.88 310.06
5 ns(NO2) 99.23 95.96 102.52 98.65 101.11 94.76 98.24 96.09
6 dJ(CH) 3.62 3.90 8.99 9.12 7.01 7.51 8.00 8.52
7 d>(CH) 19.83 18.52 15.38 13.99 19.61 13.44 10.98 10.85
8 d(CD2) 3.35 2.37 8.05 7.63 6.23 6.26 2.56 2.57
9 w(CD2) 2.57 2.58 6.58 6.86 2.17 2.39 4.39 4.47
10 n(CN) 14.22 16.22 0.48 0.47 6.69 6.74 15.79 18.02
11 r(CD2) 10.16 9.93 16.70 18.73 15.41 13.84 9.37 9.34
12 d(NO2) 16.18 14.03 16.61 14.59 15.94 15.59 16.83 14.69
13 w(NO2) 4.75 4.42 4.21 3.85 4.98 4.76 3.83 3.44
14 r(NO2) 0.29 0.34 0.65 0.73 0.35 0.45 0.16 0.21

Fig. 7 Raman spectrum of CH3NO2: (top) harmonic; (middle) anharmonic;
(bottom) experimental liquid phase (measured with either a narrow-band
laser (dotted curve) or an ultrafast laser (solid curve))85 (Adapted with
permission from S. Shigeto et al., J. Phys. Chem. B, 2008, 112, 232. Copyright
2014 American Chemical Society.).

Fig. 8 Raman spectrum of CH2DNO2: (top) harmonic; (middle) anhar-
monic; (bottom) experimental liquid phase81 (Adapted with permission
from J. R. Hill et al., J. Phys. Chem., 1991, 95, 3037. Copyright 2014
American Chemical Society.).
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for the normal modes of the non-, mono- and di-deuterated
isotopomers.

The relative intensities of the bands corresponding to CH or
CD vibrations compare rather well with the experimental data,
as well as the relative intensities of the bands corresponding to
the CN and NO2 motions. However, the agreement between
theory and experiment for the relative intensities of these two

different vibrations is poor. The anharmonic treatment gives
slightly better agreement with experiment, though the differ-
ences are very small.

The major correction arising from the anharmonic treatment
occurs for the frequencies, as also noted for the IR spectra.
Anharmonic corrections do not modify significantly the relative
intensities of the fundamental bands, except for the band at
1380 cm�1 corresponding to the ns(NO2) mode that is weakened
by the anharmonic treatment for all three isotopomers relative
to the harmonic model. However, for both of the deuterated
isotopomers, a slight improvement in the intensities of the band
corresponding to the 31 mode for the mono-deuterated and the
21 mode for the di-deuterated isotopomer (both corresponding
to a stretching of the CD bonds) seems to appear from the
anharmonic treatment, where they are reduced slightly more
than the other bands that correspond to hydrogen-related
motions. This modification of the relative intensities leads to
somewhat better agreement with experiment.

We note that the liquid-phase IR spectrum for CH3NO2 (as
can be seen in Fig. 1(a) of ref. 85, not reproduced here) presents
strikingly different spectral intensities to the gas-phase spectrum.
Therefore, a corresponding effect can be expected also for the
Raman spectra. This could explain at least some of the differences
between the calculated (gas-phase) and experimental (liquid-
phase) spectra presented here, and solvent effects will be inves-
tigated in future work.

The experimental liquid-phase spectrum of CH3NO2 from
ref. 85 is reproduced in Fig. 7 for comparison. A weak peak
appears around 1280 cm�1 corresponding to the 122 overtone.
The small shoulder appearing in the experimental spectrum on
the low-frequency side of the peak around 1400 cm�1 could be
related to this overtone band. Other very weak peaks appear
between 2700 cm�1 and 2850 cm�1 and are due to several
different overtones and combination bands. These features
could be related to the weak peak appearing in the experimental
spectrum around the same frequency. A large number of features
in the theoretical spectrum appear between 1600 and 2900 cm�1

and arise from the contributions of different combination and
overtone bands.

The experimental liquid-phase spectrum of CH2DNO2 from
ref. 81 is reproduced in Fig. 8 for comparison. A major
improvement in comparison to the experimental spectrum is
observed when including anharmonic corrections for the splitting
of the 31 band with respect to the position of the deuterium atom,
around 2195 cm�1 if the CD bond stretches almost parallel to the
NO2 plane and around 2295 cm�1 if it stretches almost perpendi-
cular to it, as seen in the experimental spectrum. A weak peak
appears in the anharmonic spectrum around 2250 cm�1,
corresponding to the 61111 combination band, mainly from
the D-eclipsed rotamer. Another weak feature appears around
2310 cm�1, corresponding to the 8191 combination band present
in all the four rotamers.

The experimental liquid-phase spectrum of CHD2NO2 from
ref. 81 is reproduced in Fig. 9 for comparison. The band
between 2250 and 2290 cm�1, arising from the 21 mode in the
harmonic treatment, is broadened in the anharmonic spectrum,

Fig. 9 Raman spectrum of CHD2NO2: (top) harmonic; (middle) anharmonic;
(bottom) experimental liquid phase81 (Adapted with permission from J. R. Hill
et al., J. Phys. Chem., 1991, 95, 3037. Copyright 2014 American Chemical
Society.).

Table 8 Calculated (harmonic and anharmonic) Raman spectral intensities of
CH3NO2 (in 10�7 Å4 amu�1)

Mode

Eclipsed Staggered

IRaman
harm IRaman

anharm IRaman
harm IRaman

anharm

1 na(CH3) 12.28 8.82 14.39 9.08
2 ns

0(CH3) 15.44 9.79 16.63 10.46
3 ns(CH3) 45.08 26.05 48.86 28.04
4 na(NO2) 2.70 1.52 8.59 4.07
5 ds

0(CH3) 13.28 8.23 13.64 8.29
6 da(CH3) 13.32 8.18 22.46 13.76
7 ns(NO2) 36.42 15.18 22.43 10.03
8 ds(CH3) 26.02 19.08 12.88 10.09
9 r>(CH3) 0.81 0.42 2.23 1.32
10 rJ(CH3) 8.16 4.78 13.38 5.70
11 n(CN) 75.59 41.59 82.64 45.52
12 d(NO2) 76.91 41.88 94.92 58.54
13 o(NO2) 16.84 8.74 23.15 14.94
14 r(NO2) 39.01 20.90 44.62 23.87
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mainly due to the 6191 combination of the four rotamers on the
low-frequency side and to the 6181 combination bands on the
high-frequency side of the D-eclipsed and H-eclipsed rotamers.
Two weak peaks appear around 1920 and 2060 cm�1 due,
respectively, to the 82 and 92 overtones, primarily from the
D-staggered rotamer. A very weak band also appears around
2530 cm�1, corresponding to the 62 and 72 overtones, mainly
from the D-staggered rotamer.

5 Summary and concluding remarks

We have presented the first analytic calculations of anharmonic
corrections to both the vibrational frequencies and intensities
in infrared and Raman spectroscopies. This has been made
possible by our recent development of a recursive scheme for
the calculation of high-order molecular properties, including
properties involving frequency-dependent perturbations and
perturbation dependence in the basis set.47 The approach is
applicable to single-determinant self-consistent field models
such as Hartree–Fock theory and Kohn–Sham DFT, and being

matrix-based, it can also be extended to linear-scaling
approaches,48,62 as well as to the relativistic four-component
level of theory.86 We have previously applied our approach to the
calculation of anharmonic corrections to vibrational frequencies
using density functional theory46 and to the analytic calculation of
Raman optical activity87 and hyper-Raman scattering,71 and in this
work, we have used it to calculate anharmonic infrared and Raman
spectra of nitromethane and its partially deuterated isotopomers.
We find that anharmonic effects lead to an improvement in
the quality of the computed IR and Raman spectra. The major
improvements arising from the anharmonic treatment occur for
the vibrational frequencies, while the effects of the anharmonic
corrections on the infrared and Raman intensities are smaller
and show only minor influences on the relative intensities of
the fundamental bands, which is in agreement with earlier
observations.38 Nevertheless, the anharmonic corrections are
important in order to capture the overtone and combination bands.
The anharmonic corrections are found to be somewhat more impor-
tant for the Raman spectra, even if very small, than for the infrared
spectra. Overall, the anharmonic spectra are in better agreement
with experiment than the corresponding harmonic spectra.

Table 9 Calculated (harmonic and anharmonic) Raman spectral intensities of CH2DNO2 (in 10�7 Å4 amu�1)

Mode

D-eclipsed H-eclipsed D-staggered H-staggered

IRaman
harm IRaman

anharm IRaman
harm IRaman

anharm IRaman
harm IRaman

anharm IRaman
harm IRaman

anharm

1 na(CH2) 17.38 10.95 14.33 11.58 14.42 9.06 16.05 15.50
2 ns(CH2) 39.30 24.11 33.83 21.09 30.68 19.30 37.84 23.54
3 nJ(CD) 26.10 10.35 26.62 15.74
3 nm(CD) 36.97 20.53 40.73 22.41
4 na(NO2) 10.43 5.79 10.19 5.10 9.98 5.16 10.43 5.69
5 d(CH2) 15.86 9.59 13.27 7.94 9.88 5.70 15.83 9.59
6 ns(NO2) 37.16 18.43 28.95 14.77 31.04 16.01 31.79 13.19
7 o(CH2) 0.49 0.28 2.80 2.19 4.88 4.24 0.95 0.63
8 r(CH2) 17.36 10.27 26.72 16.03 26.15 15.76 20.80 9.88
9 d>(CD) 0.62 0.41 5.40 3.08 7.33 3.82 2.25 1.42
10 dJ(CD) 45.65 23.57 26.09 12.92 13.89 5.93 41.00 21.04
11 n(CN) 55.33 32.47 64.80 37.43 72.07 40.31 56.78 33.44
12 d(NO2) 110.63 69.01 97.53 60.92 93.14 49.61 109.35 68.26
13 o(NO2) 14.64 7.61 29.55 16.98 33.24 19.38 16.41 9.04
14 r(NO2) 41.38 22.13 46.31 24.74 44.23 22.61 43.71 23.29

Table 10 Calculated (harmonic and anharmonic) Raman spectral intensities of CHD2NO3 (in 10�7 Å4 amu�1)

Mode

D-eclipsed H-eclipsed D-staggered H-staggered

IRaman
harm IRaman

anharm IRaman
harm IRaman

anharm IRaman
harm IRaman

anharm IRaman
harm IRaman

anharm

1 nm(CH) 18.97 12.05 21.72 9.88
1 n>(CH) 27.53 17.22 30.50 19.09
2 na(CD2) 16.84 8.27 20.23 8.76 18.52 7.83 16.57 9.40
3 ns(CD2) 43.57 20.69 51.09 28.41 49.17 19.58 40.04 19.45
4 na(NO2) 11.94 6.57 10.84 5.78 11.11 6.00 12.45 6.91
5 ns(NO2) 29.33 14.92 30.66 15.65 30.13 15.41 29.04 14.93
6 dJ(CH) 9.31 4.98 12.67 7.63 11.60 6.43 9.89 5.89
7 d>(CH) 17.97 10.90 10.29 5.95 13.27 6.31 15.56 9.40
8 d(CD2) 15.39 5.97 13.87 8.04 13.67 7.65 16.12 8.39
9 w(CD2) 3.33 1.27 36.96 19.83 14.72 9.82 2.19 0.74
10 n(CN) 57.75 32.21 1.66 1.02 22.31 11.96 70.13 39.80
11 r(CD2) 36.87 20.89 59.95 34.08 59.59 28.80 27.88 15.85
12 d(NO2) 103.21 63.69 109.73 68.89 105.29 58.31 110.54 68.81
13 w(NO2) 30.03 17.50 24.79 13.01 28.92 14.78 20.69 11.26
14 r(NO2) 41.56 22.22 47.91 25.45 43.99 23.64 41.98 22.41
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We have also shown that evaluating the energy and property
derivatives by numerical differentiation is prone to numerical
instabilities, as also noted elsewhere,51 so that obtaining reliable
numerical derivatives can prove difficult for general molecular
systems, and we have seen that the errors thus introduced can
significantly affect the calculated results, whereas analytic
approaches would be free of these sources of error. Because
of this, we believe that analytical derivatives of high order is an
important step in making the inclusion of anharmonic corrections
in calculated infrared and Raman spectra routine, leading to an
improved understanding of the importance and occurrence of
anharmonic effects in vibrational spectroscopies.

Finally, solvent effects are known to affect vibrational spectro-
scopies.88 It is therefore important that the scheme presented
here is extended to include solvent effects, either in the form
of polarizable continuum models or polarizable embedding
approaches,89 and work in this direction is in progress.90
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