The organocatalytic ring-opening polymerization of \(N\)-tosyl aziridines by an \(N\)-heterocyclic carbene\—

Camille Bakkali-Hassani, Elisabeth Rieger, Joan Vignolle, Frederik R. Wurm, Stéphane Carlotti, and Daniel Taton

The ring-opening polymerization of \(N\)-tosyl aziridines, in the presence of 1,3-bis(isopropyl)-4,5(dimethyl)imidazol-2-ylidene as an organocatalyst and an \(N\)-tosyl secondary amine as initiator mimicking the growing chain, provides the first metal-free route to well defined poly(aziridines) (PAz) and related PAz-based block copolymers.

Owing to their near unlimited structural diversity allowing their steric and electronic properties to be finely tuned, \(N\)-heterocyclic carbenes (NHCs) have revolutionized organometallic chemistry as ligands for transition metals in the last two decades.\(^1\) NHCs have also gained increasing popularity as true organic catalysts in molecular chemistry.\(^1,2\) Polymer synthesis has also greatly benefited from the potential of NHCs, providing a straightforward pathway to achieve ‘‘in-chain’’ functional PAz incorporating vinyl or acetal moieties, from purposely designed functional \(N\)-sulfonyle aziridines.\(^3\)

As mentioned, this \(N\)-sulfonyle aziridine ROP method employs a stoichiometric amount of KHMDs relative to the \(N\)-activated amine. Consequently, it also introduces metallic residues in the final PAz compounds. Here, the \(\text{Me}_5\)-Ipr NHC is used in a true catalytic amount (10\% mol rel to the amine initiator). We thus provide a facile ROP synthesis to well-defined metal-free PAz via a novel NHC catalytic pathway, as depicted in Scheme 1. We also report the first examples of all PAz-based block copolymers by sequential \(\text{Me}_5\)-Ipr-mediated ROP of two different \(N\)-sulfonyle aziridines.

Both 2-methyl-\(N\)-p-toluenesulfonyl aziridine (1) and 2-phenyl-\(N\)-p-toluenesulfonyl aziridine (2) were investigated as monomer substrates for the \(\text{Me}_5\)-Ipr-ROP. The polymerization of (1) was first carried out at 50 °C in THF -instead of DMF used in previous work\(^10,12\)- in the presence of \(\text{N}-\text{hexyl-p-toluenesulfonylamine}\) (3) as an initiator and \(\text{Me}_5\)-Ipr as a catalyst (Scheme 1). Under these conditions, well-defined PAz(1) with excellent control over molar masses (up to 20 000 g mol\(^{-1}\)) and low dispersions (\(D < 1.10\)) were obtained (entries 1–4, Table 1 and Fig. S1, ESIF). While 100 eq.

\(^1\) Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, IPB-ENSCBP, 16 av. Pey Berland, 33607 PESSAC cedex, France. E-mail: carlotti@enscbp.fr, taton@enscbp.fr; Fax: +33 (0)5 40 00 84 87; Tel: +33 (0)5 40 00 84 86

\(^2\) Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, D-55128 Mainz, Germany. E-mail: wurm@mpip-mainz.mpg.de

\(^3\) Electronic supplementary information (ESI) available. See DOI: 10.1039/c6cc04323b
of 1 could be quantitatively converted within 24 h, 5 days were needed to reach completion of the OROP of 2, due to the effect of steric hindrance of the 2-substituent on the aziridine ring on monomer reactivity. Yet, PAz(2) exhibiting molar masses increasing with the initial \([M_0]/[3]_0\) molar ratio (entries 5–7, Table 1) were also achieved in this case. In contrast to PAz(1), however, a small shoulder progressively appeared in the high molar mass region of SEC traces of PAz(2) (Fig. S2 in the ESI†), as the initial \([2]_0/[3]_0\) was increased, i.e. for higher molar masses targeted.

The discrepancy noted between experimental and theoretical molar masses (Table 1) was attributed to the calibration of SEC with PS standards. Molar masses of PAz(2), as determined using \(^1\)H NMR spectroscopy (5200 and 27 000 g mol\(^{-1}\), entries 5 and 7, Table 1, respectively) indeed closely matched theoretical values. Fig. 1a shows a typical \(^1\)H NMR of a purified PAz(2) (entry 5), with the presence, in particular, of the characteristic signals of the hexyl group from the amine initiator at 0.7–1.3 ppm. The relative integration of these signals with those corresponding to the main chain protons (d) of PAz(2) allowed estimation of the PAz(2) molar mass (Table 1). The agreement between experimental and theoretical molar masses attested to the complete initiation of polymer chains by secondary amine 3. In the case of PAz(1), overlapping of both signals due to aliphatic protons and to the pendant methyl group in the backbone precluded an accurate determination of the molar masses of these compounds (Fig. S7 in the ESI†).

The presence of the N-hexyl-p-toluenesulfonylamino group from 3 in the z-position could yet be evidenced by MALDI-ToF MS analysis of low molar mass PAz(1) (entry 1, Table 1). A single population, corresponding to cationized PAz(1), with a peak-to-peak mass increment of 211.3 g mol\(^{-1}\) corresponding to the molar mass of one monomer unit derived from 1, was indeed unambiguously observed, as shown in Fig. 1b and c.

In combination, characterization by SEC, NMR and MALDI-ToF MS is consistent with a controlled OROP of \(N\)-tosyl aziridines. This was also supported by the perfectly linear evolution of \(\ln([M_0]/[M])\) vs. time, when monitoring the \(^{15}\)N-Mrs-OROP of 2 using real-time \(^1\)H NMR spectroscopy (Fig. S9 and S10, ESI†).

Based on the background literature regarding other examples of NHC-mediated OROP \(^{3,5}\) either a nucleophilic or a basic mechanism, i.e. through the aziridine or the amine activation by the Me5-Ipr NHC, respectively (vide infra) could be operative (see Scheme S1 in the ESI†). The former mechanism would involve ring opening of the aziridine by direct attack by Me5-Ipr, forming an imidazolium amide zwitterionic intermediate that would be further displaced by the secondary amine (3). However, given the high basicity of Me5-Ipr (pK\(_a\) = 24 in DMSO\(^{3,5}\)), in particular compared to that of the sulfonylamine group

Table 1

<table>
<thead>
<tr>
<th>Run</th>
<th>R</th>
<th>([M]_0/[3]_0)</th>
<th>Time (h)</th>
<th>Conv. (%)</th>
<th>(M_n) (_{calcd}) (g mol(^{-1}))</th>
<th>(M_n) (_{exp}) (g mol(^{-1}))</th>
<th>(D^\prime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>10/1/0.1</td>
<td>24</td>
<td>100</td>
<td>2100</td>
<td>1880</td>
<td>1.07</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>20/1/0.1</td>
<td>24</td>
<td>100</td>
<td>4200</td>
<td>2500</td>
<td>1.06</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>50/1/0.1</td>
<td>24</td>
<td>100</td>
<td>10 600</td>
<td>6000</td>
<td>1.06</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>100/1/0.1</td>
<td>24</td>
<td>100</td>
<td>21 100</td>
<td>11 700</td>
<td>1.04</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>20/1/0.1</td>
<td>120</td>
<td>97</td>
<td>5300</td>
<td>2600</td>
<td>1.06</td>
</tr>
<tr>
<td>6</td>
<td>Ph</td>
<td>50/1/0.1</td>
<td>120</td>
<td>98</td>
<td>13 400</td>
<td>6250</td>
<td>1.12</td>
</tr>
<tr>
<td>7</td>
<td>Ph</td>
<td>100/1/0.1</td>
<td>120</td>
<td>99</td>
<td>27 000</td>
<td>10 800</td>
<td>1.15</td>
</tr>
</tbody>
</table>

\(^a\) Determined by \(^1\)H NMR. \(^b\) Theoretical molar masses: \(M_n\) \(_{calcd} = ([M]_0/[3]) \times M_0 \times conv. (M_0 = molar mass of one monomer unit). \(^c\) Determined by size exclusion chromatography in THF (PS calibration).
In summary, we describe for the first time the “controlled/living” organocatalyzed ring-opening polymerization (OROP) of N-activated aziridines by an N-heterocyclic carbene (NHC), namely, 1,3-bis(isopropyl)-4,5-dimethylimidazol-2-ylidene. Reactions can be conducted in THF at 50 °C in the presence of an N-activated secondary amine as an initiator to mimic the growing chains. This provides a straightforward access to structurally well-defined and metal-free polyaziridines (PAz) that can serve as precursors of linear 2-n-alkyl-substituted poly(ethylene imine)s after removal of the N-tosyl groups. This method can also be applied to achieve well-defined all PAz-based block copolymeres by sequential OROP utilizing a carbene catalysis. Overall, this work further expands the monomer substrate diversity in NHC-mediated polymerization reactions.

The authors are grateful to the French Ministry of Education and Research for financial support of CBH and to the European Commission through project SUSPOL-EJD 642671.

Notes and references

