Issue 21, 2016

ATP triggered drug release and DNA co-delivery systems based on ATP responsive aptamers and polyethylenimine complexes

Abstract

Stimuli-responsive nanocarriers for anticancer drug and gene co-delivery are a promising strategy in cancer therapy due to their combination of chemotherapy and gene therapy. In this work, we developed a facile and effective method to fabricate stimuli-responsive nanocarriers for anticancer drug and gene co-delivery based on complexes of polyethylenimine (PEI) with an adenosine triphosphate (ATP) responsive aptamer duplex (ARAD). No chemical reactions or complex modifications were used in the construction processes. In this system, Doxorubicin-loaded aptamer duplex and plasmid DNA (p53) can be bound by PEI by electronic interactions to form stable complexes which effectively protect the aptamer and p53 from DNase degradation. The intercalated Dox can be released on-demand by a structural change in the aptamer duplex in an ATP-rich environment. The morphology and average size of the nanocarriers were characterized by zeta potential and transmission electron microscopy (TEM). The nanocarriers exhibit lower cell toxicity in HeLa cell lines relative to PEI. RT-PCR and Western blot analysis confirmed that p53 could be effectively delivered and expressed in HeLa cells by PEI/ARAD/p53 complexes. Moreover, the apoptosis percentage of HeLa cells treated with PEI/ARAD/Dox/p53 complex increased to 40.8%, compared to 24.7% for PEI/ARAD/Dox complex and 11.5% for PEI/ARAD/p53, respectively. The result demonstrated that the combinatorial delivery of Dox and p53 by nanocarriers could induce synergistic actions and lead to effective cancer cell apoptosis.

Graphical abstract: ATP triggered drug release and DNA co-delivery systems based on ATP responsive aptamers and polyethylenimine complexes

Supplementary files

Article information

Article type
Paper
Submitted
29 Dec 2015
Accepted
13 Apr 2016
First published
20 Apr 2016

J. Mater. Chem. B, 2016,4, 3832-3841

ATP triggered drug release and DNA co-delivery systems based on ATP responsive aptamers and polyethylenimine complexes

G. Wang, G. Huang, Y. Zhao, X. Pu, T. Li, J. Deng and J. Lin, J. Mater. Chem. B, 2016, 4, 3832 DOI: 10.1039/C5TB02764K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements