Issue 30, 2016

Solder-reflow resistant solid-state micro-supercapacitors based on ionogels

Abstract

All-solid-state devices and thermal resistance to solder reflow are crucial issues with respect to micro-supercapacitors. While the latter issue can be addressed by using ionic liquids, the former shows promising results by employing the ionogel approach. The present study focuses on a novel formulation of ionogels—for use as solid state electrolytes in micro-supercapacitors with silicon nanowire electrodes—which promotes the crack-free formation of an efficient solid electrolyte onto silicon nanostructures in a single-step sol–gel process. The capacitance obtained was the same as that for a device using a non-confined ionic liquid, showing a good wetting of the 3D nanostructured silicon electrodes by the sol precursor of the solid ionogel. The assembled symmetric micro-supercapacitor exhibits very high cycling stability and can sustain the reflow soldering process used in the fabrication of microelectronic devices without compromising their electrochemical performance, and even improving their frequency response.

Graphical abstract: Solder-reflow resistant solid-state micro-supercapacitors based on ionogels

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2016
Accepted
23 Jun 2016
First published
23 Jun 2016

J. Mater. Chem. A, 2016,4, 11835-11843

Solder-reflow resistant solid-state micro-supercapacitors based on ionogels

M. Brachet, D. Gaboriau, P. Gentile, S. Fantini, G. Bidan, S. Sadki, T. Brousse and J. Le Bideau, J. Mater. Chem. A, 2016, 4, 11835 DOI: 10.1039/C6TA03142K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements